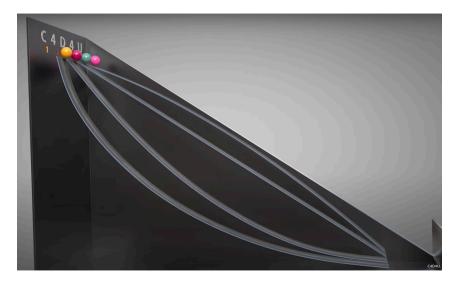
IMPERIAL

The Art of Controlling

How can we change how things behave?

Lucas M. Moschen

How it all began...



A journey from classical mechanics to modern control theory. All with something in mind: modelling

We'll touch on:

- My own path into this field
- Real-world motivations from biology, engineering, and physics
- How mathematics helps us influence the behaviour of systems
- The core ideas behind control theory

A journey from classical mechanics to modern control theory. All with something in mind: modelling

We'll touch on:

- My own path into this field
- Real-world motivations from biology, engineering, and physics
- How mathematics helps us influence the behaviour of systems
- The core ideas behind control theory

A journey from classical mechanics to modern control theory. All with something in mind: modelling

We'll touch on:

- My own path into this field
- Real-world motivations from biology, engineering, and physics
- How mathematics helps us influence the behaviour of systems
- The core ideas behind control theory

A journey from classical mechanics to modern control theory. All with something in mind: modelling

We'll touch on:

- My own path into this field
- Real-world motivations from biology, engineering, and physics
- How mathematics helps us influence the behaviour of systems
- The core ideas behind control theory

A journey from classical mechanics to modern control theory. All with something in mind: modelling

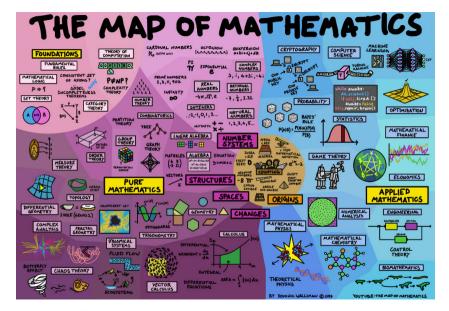
We'll touch on:

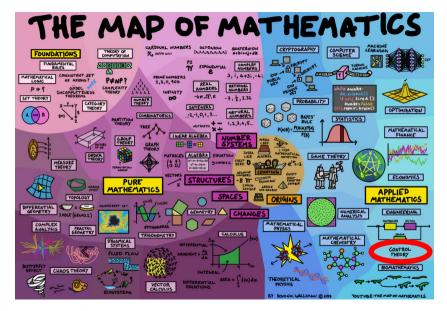
- My own path into this field
- Real-world motivations from biology, engineering, and physics
- How mathematics helps us influence the behaviour of systems
- The core ideas behind control theory

"The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them."

Liu, Slotine & Barabási (2011)¹

¹Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. Controllability of complex networks, Nature, 473, 167–173 (2011).



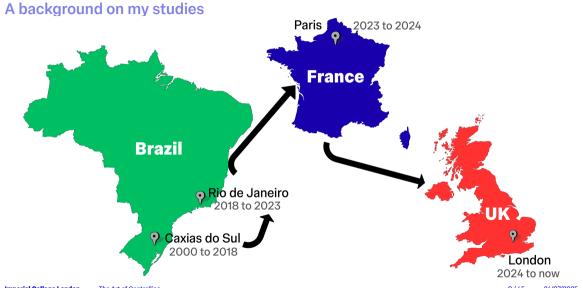


The mathematical landscape: a view from Paris

IMPERIAL

A bit about my path

The Art of Controlling 24/07/2025



Challenges

- Switching fields: Adapting in different areas from mathematics
- Cultural barriers: Studying in Portuguese, French, and English
- **Imposter feelings:** Joining new research environments and learning to trust my ideas (also having them!)
- Loneliness in research: Building confidence when progress is slow and unclear
- Communication: Talking to peers in conferences and events

My academic mentors

Main Supervisors

M. Soledad Aronna (MSc)

My academic mentors

Main Supervisors

M. Soledad Aronna (MSc)

Camille Coron (MSc)

Co-Supervisors

Luis Almeida (MSc)

My academic mentors

Main Supervisors

M. Soledad Aronna (MSc)

Camille Coron (MSc)

Greg Pavliotis (PhD)

Co-Supervisors

Luis Almeida (MSc)

Dante Kalise (PhD)

M. Soledad Aronna

- Mathematical modelling of infectious diseases
- Particular application to COVID-19: quarantine, isolation, and testing
- Optimal distribution of vaccines in metropolitan areas
- Areas: Differential Equations, Optimisation, Functional Analysis, Statistics, Programming, ...

M. Soledad Aronna

- Mathematical modelling of infectious diseases
- Particular application to COVID-19: quarantine, isolation, and testing
- Optimal distribution of vaccines in metropolitan areas
- Areas: Differential Equations, Optimisation, Functional Analysis, Statistics, Programming, ...

M. Soledad Aronna

- Mathematical modelling of infectious diseases
- Particular application to COVID-19: quarantine, isolation, and testing
- Optimal distribution of vaccines in metropolitan areas
- Areas: Differential Equations, Optimisation, Functional Analysis, Statistics, Programming, ...

M. Soledad Aronna

- Mathematical modelling of infectious diseases
- Particular application to COVID-19: quarantine, isolation, and testing
- Optimal distribution of vaccines in metropolitan areas
- Areas: Differential Equations, Optimisation, Functional Analysis, Statistics, Programming, ...

Camille Coron

Luis Almeida

- Population dynamics of mosquitoes
- Formulation of biological methods to reduce them
- Applications in Cuba and French Polynesia
- Areas: Probability, Stochastic Differential Equations, Data Analysis, Biology, ...

Camille Coron

Luis Almeida

- Population dynamics of mosquitoes
- Formulation of biological methods to reduce them
- Applications in Cuba and French Polynesia
- Areas: Probability, Stochastic Differential Equations, Data Analysis, Biology, ...

Camille Coron

Luis Almeida

- Population dynamics of mosquitoes
- Formulation of biological methods to reduce them
- Applications in Cuba and French Polynesia
- Areas: Probability, Stochastic Differential Equations, Data Analysis, Biology, ...

Camille Coron

Luis Almeida

- Population dynamics of mosquitoes
- Formulation of biological methods to reduce them
- Applications in Cuba and French Polynesia
- Areas: Probability, Stochastic Differential Equations. Data Analysis, Biology, ...

Greg Pavliotis

Dante Kalise

- Studying how probability distributions and interacting particles evolve over time
- Designing ways to change their behaviour using mathematical tools
- Applications in physics, chemistry, and data science, especially in sampling for research simulations
- Areas: Functional Analysis, Partial Differential Equations, Numerical Analysis, Stochastic Differential Equations, ...

Greg Pavliotis

Dante Kalise

- Studying how probability distributions and interacting particles evolve over time
- Designing ways to change their behaviour using mathematical tools
- Applications in physics, chemistry, and data science, especially in sampling for research simulations
- Areas: Functional Analysis, Partial Differential Equations, Numerical Analysis, Stochastic Differential Equations, ...

Greg Pavliotis

Dante Kalise

- Studying how probability distributions and interacting particles evolve over time
- Designing ways to change their behaviour using mathematical tools
- Applications in physics, chemistry, and data science, especially in sampling for research simulations
- **Areas:** Functional Analysis, Partial Differential Equations, Numerical Analysis, Stochastic Differential Equations, ...

Greg Pavliotis

Dante Kalise

- Studying how probability distributions and interacting particles evolve over time
- Designing ways to change their behaviour using mathematical tools
- Applications in physics, chemistry, and data science, especially in sampling for research simulations
- Areas: Functional Analysis, Partial Differential Equations, Numerical Analysis, Stochastic Differential Equations, ...

And what is at the centre of all this?

And what is at the centre of all this?

Control Theory.

From local rules to global behaviour

- A traditional Scottish dance with a caller who steers the choreography (pattern)
- Local interactions lead to global coordination
- We model the agents with stochastic differential equations (SDEs)
- The control is the caller, changing the patterns

Photo © Dave Conner (CC BY 4.0) - clip-art adaptation by L. Moschen.

From local rules to global behaviour

- A traditional Scottish dance with a caller who steers the choreography (pattern)
- Local interactions lead to global coordination
- We model the agents with stochastic differential equations (SDEs)
- The control is the caller, changing the patterns

Photo © Dave Conner (CC BY 4.0) - clip-art adaptation by L. Moschen.

From local rules to global behaviour

- A traditional Scottish dance with a caller who steers the choreography (pattern)
- Local interactions lead to global coordination
- We model the agents with stochastic differential equations (SDEs)
- The control is the caller, changing the patterns

Photo © Dave Conner (CC BY 4.0) - clip-art adaptation by L. Moschen.

From local rules to global behaviour

- A traditional Scottish dance with a caller who steers the choreography (pattern)
- Local interactions lead to global coordination
- We model the agents with stochastic differential equations (SDEs)
- The control is the caller, changing the patterns

Photo © Dave Conner (CC BY 4.0) - clip-art adaptation by L. Moschen.

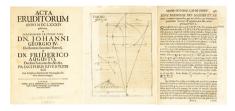
IMPERIAL

A glimpse on the history

The Art of Controlling 24/07/2025

The Brachistochrone curve

Johann Bernoulli, 1696



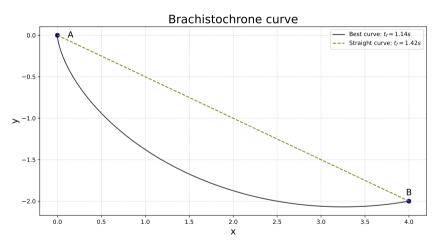
"In a vertical plane, two points A and B are given. The task is to find the trajectory of a moving particle M such that, starting from point A and under the influence of its own weight, it reaches point B in the shortest possible time."²

Johann Bernoulli (1667-1748)

² Johann Bernoulli, "Problema novum ad cujus solutionem Mathematici invitantur" (1696)

The Brachistochrone curve

Johann Bernoulli, 1696



Calculus of variations

The general problem in 1D

For each $x \in [a, b]$, we **choose** the value of the function y'(x). The resulting curve should be **continuous**, start at y_0 and end at y_1 , leading to

$$\min \int_a^b L(x,y(x),y'(x)) dx$$

s. t.
$$y(a) = y_0, y(b) = y_1.$$

From Calculus of Variations to Optimal Control

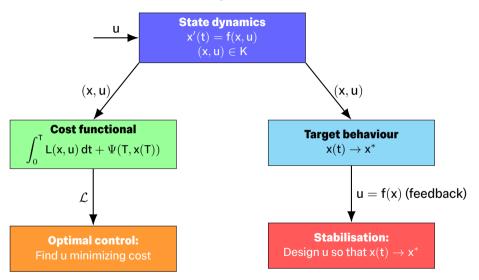
Calculus of Variations

$$\begin{aligned} \min/\max \int_a^b L(x,y(x),y'(x)) \, dx \\ \text{subject to y smooth} \\ y(a) &= y_0, \quad y(b) = y_1 \end{aligned}$$

Optimal Control

$$\begin{split} \min / \max \int_0^T L(t, \mathbf{x}(t), \mathbf{u}(t)) \, dt + \Psi(T, \mathbf{x}(T)) \\ \text{subject to } \dot{\mathbf{x}}(t) &= \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), \\ \mathbf{x}(0) &= \mathbf{x}_0, \quad \mathbf{x}(T) = \mathbf{x}_1 \end{split}$$

Optimal control and stabilisation diagram

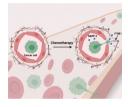


Applications across disciplines

Engineering: Controlling trajectories and combining sensor data in **self-driving cars**

Applications across disciplines

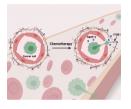
Engineering: Controlling trajectories and combining sensor data in **self-driving cars**



Biology: Personalised chemotherapy schedules that **maximise** effectiveness while **minimising** side effects

Applications across disciplines

Engineering: Controlling trajectories and combining sensor data in self-driving cars



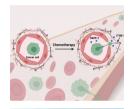
Biology: Personalised chemotherapy schedules that **maximise** effectiveness while **minimising** side effects



Social Sciences:Model and **influence**how opinions evolve in
a society; for instance,
in combating misinformation

Applications across disciplines

Engineering: Controlling trajectories and combining sensor data in self-driving cars



Biology: Personalised chemotherapy schedules that **maximise** effectiveness while **minimising** side effects

Social Sciences: Model and influence how opinions evolve in a society; for instance, in combating misinformation

Economics: Optimise investment strategies over time, balancing risk and return in dynamic markets

Fishing as a control problem

Problem

Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: **model the problem**. What are the relevant variables?

x(t) := number of fish in a lake at time t

u(t) := number of fish caught at time to

Population dynamics (with fishing):

$$\dot{x}(t) = r \, x(t) \left(1 - \frac{x(t)}{k} \right) - u(t), \label{eq:equation_eq}$$

r: growth rate; r x(t)/k: death rate by competition

Fishing as a control problem

Problem

Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: **model the problem**. What are the relevant variables?

x(t) := number of fish in a lake at time t

u(t) := number of fish caught at time t

Population dynamics (with fishing):

$$\dot{x}(t) = rx(t)\left(1 - \frac{x(t)}{k}\right) - u(t),$$

r: growth rate; r x(t)/k: death rate by competition

Fishing as a control problem

Problem

Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: **model the problem**. What are the relevant variables?

 $\mathbf{x}(t) := \text{number of fish in a lake at time } t$

u(t) := number of fish caught at time t

Population dynamics (with fishing):

$$\dot{x}(t) = rx(t)\left(1 - \frac{x(t)}{k}\right) - u(t),$$

r: growth rate; r x(t)/k: death rate by competition

Fishing as a control problem

Problem

Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: **model the problem**. What are the relevant variables?

x(t) := number of fish in a lake at time t

u(t) := number of fish caught at time t

Population dynamics (with fishing):

$$\dot{\mathbf{x}}(\mathbf{t}) = r \, \mathbf{x}(\mathbf{t}) \left(1 - \frac{\mathbf{x}(\mathbf{t})}{\mathbf{k}} \right) - \mathbf{u}(\mathbf{t}),$$

r: growth rate; r x(t)/k: death rate by competition

Each fish is sold at a price E, generating revenue Eu(t). Fishing has an associated cost: the fewer fish in the lake, the harder it is to catch one. We model the unit cost as c/x(t).

Therefore, the total profit over [0, T] is

$$Profit := \int_0^T \left(\mathsf{E} \mathsf{u}(t) - \frac{\mathsf{c}}{\mathsf{x}(t)} \mathsf{u}(t) \right) \mathsf{d}t$$

$$\max \int_0^T \left(\mathsf{E} u(t) - \frac{c}{x(t)} u(t) \right) dt$$

subject to
$$\dot{x}(t) = rx(t) \left(1 - \frac{x(t)}{k}\right) - u(t),$$

$$0 \le u(t) \le U_{\max}, \quad x(t) \ge 0, \quad \text{for } t \in [0, T],$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(T) \ge \mathbf{x}_{\min}.$$

Each fish is sold at a price E, generating **revenue** Eu(t). Fishing has an **associated cost**: the fewer fish in the lake, the harder it is to catch one. We model the unit cost as c/x(t).

Therefore, the total profit over [0, T] is

$$Profit := \int_0^T \left(\mathsf{E} \mathsf{u}(t) - \frac{\mathsf{c}}{\mathsf{x}(t)} \mathsf{u}(t) \right) \mathsf{d}t$$

$$\max \int_0^T \left(\mathsf{E} \mathsf{u}(\mathsf{t}) - \frac{\mathsf{c}}{\mathsf{x}(\mathsf{t})} \mathsf{u}(\mathsf{t}) \right) \mathsf{d} \mathsf{t}$$

subject to
$$\dot{x}(t) = rx(t) \left(1 - \frac{x(t)}{k}\right) - u(t),$$

$$0 \leq u(t) \leq U_{\max}, \quad x(t) \geq 0, \quad \text{for } t \in [0,T],$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(\mathsf{T}) \ge \mathbf{x}_{\min}.$$

Each fish is sold at a price E, generating **revenue** Eu(t). Fishing has an **associated cost**: the fewer fish in the lake, the harder it is to catch one. We model the unit cost as c/x(t).

Therefore, the total profit over [0, T] is

$$\text{Profit} := \int_0^T \left(\mathsf{E} \mathsf{u}(\mathsf{t}) - \frac{\mathsf{c}}{\mathsf{x}(\mathsf{t})} \mathsf{u}(\mathsf{t}) \right) \mathsf{d} \mathsf{t}$$

$$\max \int_0^T \left(\mathsf{E} \mathsf{u}(\mathsf{t}) - \frac{\mathsf{c}}{\mathsf{x}(\mathsf{t})} \mathsf{u}(\mathsf{t}) \right) \mathsf{d} \mathsf{t}$$

subject to
$$\dot{x}(t) = rx(t) \left(1 - \frac{x(t)}{k}\right) - u(t),$$

$$0 \leq u(t) \leq U_{\max}, \quad x(t) \geq 0, \quad \text{for } t \in [0,T],$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(\mathsf{T}) \ge \mathbf{x}_{\min}.$$

Each fish is sold at a price E, generating **revenue** Eu(t). Fishing has an **associated cost**: the fewer fish in the lake, the harder it is to catch one. We model the unit cost as c/x(t).

Therefore, the total profit over [0, T] is

$$\text{Profit} := \int_0^T \left(\mathsf{E} \mathsf{u}(\mathsf{t}) - \frac{\mathsf{c}}{\mathsf{x}(\mathsf{t})} \mathsf{u}(\mathsf{t}) \right) \mathsf{d} \mathsf{t}$$

$$\max \int_0^T \left(\mathsf{E} u(t) - \frac{c}{x(t)} u(t) \right) dt$$

subject to
$$\dot{x}(t) = rx(t) \left(1 - \frac{x(t)}{k}\right) - u(t),$$

$$0 \leq \textbf{u}(\textbf{t}) \leq \textbf{U}_{\max}, \quad \textbf{x}(\textbf{t}) \geq 0, \quad \text{for } \textbf{t} \in [0, \textbf{T}],$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(\mathsf{T}) \ge \mathbf{x}_{\min}.$$

IMPERIAL

Interesting problems

The Art of Controlling 24/07/2025

- Epidemics are a complicated problem, especially in metropolises
- Mathematical models help describe and predict disease spread
- Vaccination is a reliable way to control outbreaks with minimal disruption
- The goal is to optimally allocate a limited supply of vaccines

- Epidemics are a complicated problem, especially in metropolises
- Mathematical models help describe and predict disease spread
- Vaccination is a reliable way to control outbreaks with minimal disruption
- The goal is to optimally allocate a limited supply of vaccines

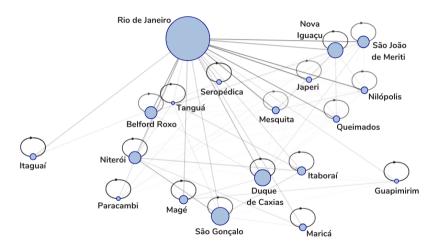
- Epidemics are a complicated problem, especially in metropolises
- Mathematical models help describe and predict disease spread
- Vaccination is a reliable way to control outbreaks with minimal disruption
- The goal is to optimally allocate a limited supply of vaccines

- Epidemics are a complicated problem, especially in **metropolises**
- Mathematical models help describe and predict disease spread
- Vaccination is a reliable way to control outbreaks with minimal disruption
- The goal is to optimally allocate a limited supply of vaccines

Epidemics in complex cities

Welcome to Rio de Janeiro metropolitan area!

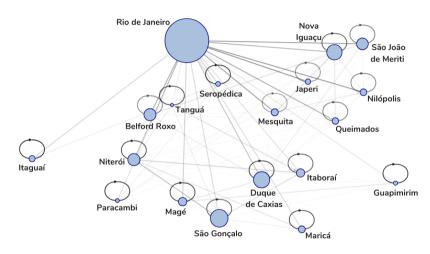
- More people, more contacts.
- Intercity commuting increases the spread
- Vaccination should consider the spatia distribution



Epidemics in complex cities

Welcome to Rio de Janeiro metropolitan area!

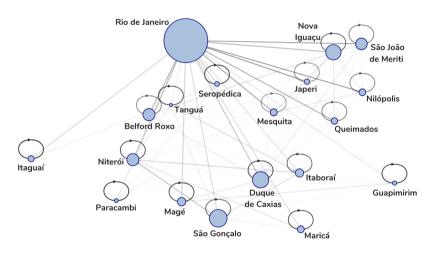
- More people, more contacts.
- Intercity commuting increases the spread
- Vaccination should consider the spatia distribution



Epidemics in complex cities

Welcome to Rio de Janeiro metropolitan area!

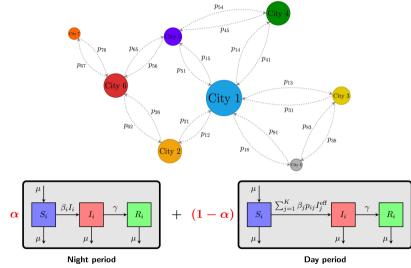
- More people, more contacts.
- Intercity commuting increases the spread
- Vaccination should consider the spatial distribution



Modelling is the first task!

How commuting and epidemics interact?

- Cities are nodes, commuting are connections
- During the day, disease spreads among cities
- During the night, disease spreads within cities



Aim

Use vaccination to reduce the burden of disease in a metropolitan area.

We add a vaccination rate $u_i(t)$ for each city, so

$$\mathbf{S}_{i}'(t) = -\alpha\beta_{i}\mathbf{S}_{i}(t)\mathbf{I}_{i}(t) - (1-\alpha)\sum_{j=1}^{K}\beta_{j}(\mathbf{p}_{ij}\mathbf{S}_{i}(t))\mathbf{I}_{j}^{eff}(t) - \mathbf{u}_{i}(t)\mathbf{S}_{i}(t)$$

Trade-off: health impact (e.g., number of infected, number of deaths) \times cost of vaccination

$$\text{Burden of disease} := c_h \int_0^T \sum_{i=1}^K n_i I_i(t) \, dt + \text{Vaccination cost} := c_v \int_0^T \sum_{i=1}^K n_i u_i(t) \, dt$$

 $\textbf{Vaccination constraints:}\ 0 \leq u_i(t)S_i(t) \leq v_i^{max}, \int_0^t \sum_{i=1}^K n_i u_i(\tau)S_i(\tau)\,d\tau \leq V_{weekly}(t)$

Aim

Use vaccination to reduce the burden of disease in a metropolitan area.

We add a **vaccination rate** $u_i(t)$ for each city, so

$$S_i'(t) = -\alpha \beta_i S_i(t) I_i(t) - (1 - \alpha) \sum_{j=1}^K \beta_j(p_{ij} S_i(t)) I_j^{eff}(t) - \mathbf{u_i(t)} S_i(t)$$

Trade-off: health impact (e.g., number of infected, number of deaths) \times cost of vaccination.

$$\text{Burden of disease} := c_h \int_0^T \sum_{i=1}^K n_i I_i(t) \, dt + \text{Vaccination cost} := c_v \int_0^T \sum_{i=1}^K n_i u_i(t) \, dt$$

 $\textbf{Vaccination constraints: } 0 \leq u_i(t)S_i(t) \leq v_i^{max}, \int_0^t \sum_{i=1}^K n_i u_i(\tau)S_i(\tau) \, d\tau \leq V_{weekly}(t)$

Aim

Use vaccination to reduce the burden of disease in a metropolitan area.

We add a vaccination rate $u_i(t)$ for each city, so

$$\mathbf{S}_{\mathbf{i}}'(\mathbf{t}) = -\alpha\beta_{\mathbf{i}}\mathbf{S}_{\mathbf{i}}(\mathbf{t})\mathbf{I}_{\mathbf{i}}(\mathbf{t}) - (1-\alpha)\sum_{j=1}^{K}\beta_{\mathbf{j}}(\mathbf{p}_{\mathbf{i}\mathbf{j}}\mathbf{S}_{\mathbf{i}}(\mathbf{t}))\mathbf{I}_{\mathbf{j}}^{\mathbf{eff}}(\mathbf{t}) - \mathbf{u}_{\mathbf{i}}(\mathbf{t})\mathbf{S}_{\mathbf{i}}(\mathbf{t})$$

Trade-off: health impact (e.g., number of infected, number of deaths) \times cost of vaccination.

$$\text{Burden of disease} := c_h \int_0^T \sum_{i=1}^K n_i I_i(t) \, dt + \text{Vaccination cost} := c_v \int_0^T \sum_{i=1}^K n_i u_i(t) \, dt$$

 $\textbf{Vaccination constraints: } 0 \leq u_i(t)S_i(t) \leq v_i^{max}, \int_0^t \sum_{i=1}^K n_i u_i(\tau)S_i(\tau) \, d\tau \leq V_{weekly}(t)$

Aim

Use vaccination to reduce the burden of disease in a metropolitan area.

We add a vaccination rate $u_i(t)$ for each city, so

$$\mathbf{S}_{\mathbf{i}}'(\mathbf{t}) = -\alpha\beta_{\mathbf{i}}\mathbf{S}_{\mathbf{i}}(\mathbf{t})\mathbf{I}_{\mathbf{i}}(\mathbf{t}) - (1-\alpha)\sum_{j=1}^{K}\beta_{\mathbf{j}}(\mathbf{p}_{\mathbf{i}\mathbf{j}}\mathbf{S}_{\mathbf{i}}(\mathbf{t}))\mathbf{I}_{\mathbf{j}}^{\mathbf{eff}}(\mathbf{t}) - \mathbf{u}_{\mathbf{i}}(\mathbf{t})\mathbf{S}_{\mathbf{i}}(\mathbf{t})$$

Trade-off: health impact (e.g., number of infected, number of deaths) \times cost of vaccination.

$$\text{Burden of disease} := c_h \int_0^T \sum_{i=1}^K n_i I_i(t) \, dt + \text{Vaccination cost} := c_v \int_0^T \sum_{i=1}^K n_i u_i(t) \, dt$$

 $\textbf{Vaccination constraints: } 0 \leq u_i(t)S_i(t) \leq v_i^{max}, \int_0^t \sum_{i=1}^K n_i u_i(\tau)S_i(\tau) \, d\tau \leq V_{weekly}(t)$

Aim

Use vaccination to reduce the burden of disease in a metropolitan area.

We add a **vaccination rate** $u_i(t)$ for each city, so

$$S_i'(t) = -\alpha \beta_i S_i(t) I_i(t) - (1 - \alpha) \sum_{j=1}^K \beta_j(p_{ij} S_i(t)) I_j^{eff}(t) - \frac{\mathbf{u}_i(t) S_i(t)}{\mathbf{v}_i(t)}$$

Trade-off: health impact (e.g., number of infected, number of deaths) \times cost of vaccination.

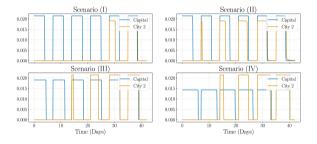
$$\text{Burden of disease} := c_h \int_0^T \sum_{i=1}^K n_i I_i(t) \, dt + \text{Vaccination cost} := c_v \int_0^T \sum_{i=1}^K n_i u_i(t) \, dt$$

$$\textbf{Vaccination constraints: } 0 \leq u_i(t)S_i(t) \leq v_i^{max}, \int_0^t \sum_{i=1}^K n_i u_i(\tau)S_i(\tau) \, d\tau \leq V_{weekly}(t)$$

This problem has no closed-form solution. We solve it numerically.

From numerical experiments to theoretical results

Observation: simulations showed that the optimal vaccination strategy switches between **maximum effort** and **no effort**. This is known in control theory as a **bang-bang** strategy.



Theorem: For the optimal control problem with constraints, the function $u_i(t)S_i(t)$ is 0 or its maximum v_i^{\max} . Moreover, in each week it cannot grow!

Personally rewarding: the moment when numerics and theory align.

From numerical experiments to theoretical results

Observation: simulations showed that the optimal vaccination strategy switches between **maximum effort** and **no effort**. This is known in control theory as a **bang-bang** strategy.

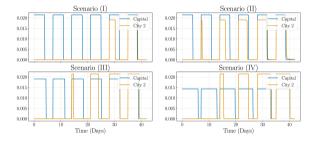


Theorem: For the optimal control problem with constraints, the function $u_i(t)S_i(t)$ is 0 or its maximum v_i^{\max} . Moreover, in each week it cannot grow!

Personally rewarding: the moment when numerics and theory align.

From numerical experiments to theoretical results

Observation: simulations showed that the optimal vaccination strategy switches between **maximum effort** and **no effort**. This is known in control theory as a **bang-bang** strategy.



Theorem: For the optimal control problem with constraints, the function $u_i(t)S_i(t)$ is 0 or its maximum v_i^{\max} . Moreover, in each week it cannot grow!

Personally rewarding: the moment when numerics and theory align.

What did we learn from vaccination control?

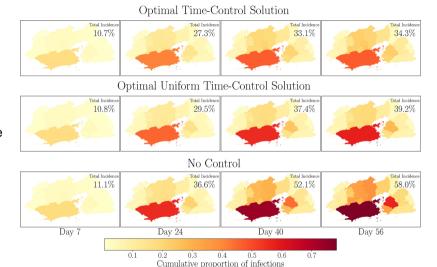
- Optimal control strategies reduce infection spread
- Modelling and optimisation make real-world policies more effective
- We can apply theory in real-world problems!

What did we learn from vaccination control?

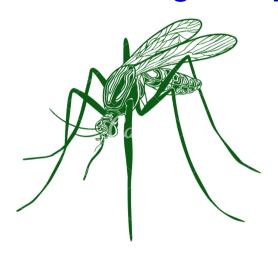
- Optimal control strategies reduce infection spread
- Modelling and optimisation make real-world policies more effective
- We can apply theory in real-world problems!

What did we learn from vaccination control?

- Optimal control strategies reduce infection spread
- Modelling and optimisation make real-world policies more effective
- We can apply theory in real-world problems!

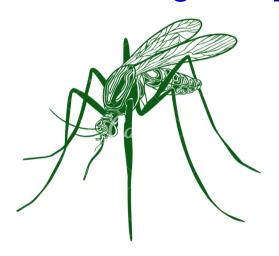


Controlling Mosquito Populations



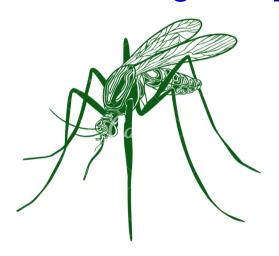
- Mosquitoes are vectors of serious diseases like dengue, Zika, and chikungunya
- Population dynamics can be modelled mathematically to evaluate control strategies
- We aim to reduce populations by releasing sterile males

Controlling Mosquito Populations



- Mosquitoes are vectors of serious diseases like dengue, Zika, and chikungunya
- Population dynamics can be modelled mathematically to evaluate control strategies
- We aim to reduce populations by releasing sterile males

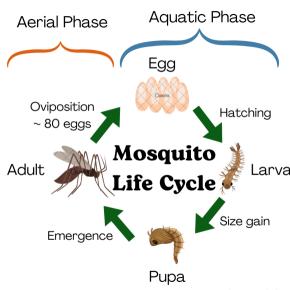
Controlling Mosquito Populations



- Mosquitoes are vectors of serious diseases like dengue, Zika, and chikungunya
- Population dynamics can be modelled mathematically to evaluate control strategies
- We aim to reduce populations by releasing sterile males

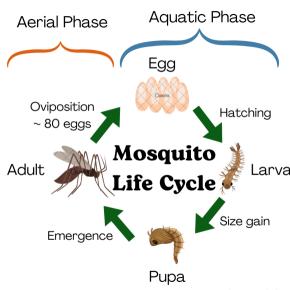
First we model!

- Each life stage will be a compartment, where we will count the number of individuals
- Parameters: birth, death, maturation, ...
- Described by a system of ordinary differential equations or stochastic processes



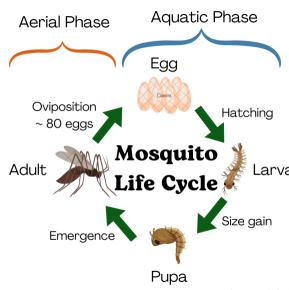
First we model!

- Each life stage will be a compartment, where we will count the number of individuals
- Parameters: birth, death, maturation, ...
- Described by a system of ordinary differential equations or stochastic processes



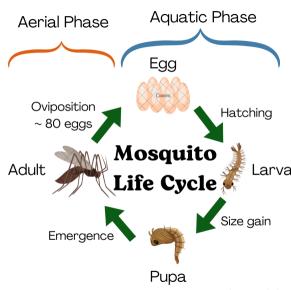
First we model!

- Each life stage will be a compartment, where we will count the number of individuals
- Parameters: birth, death, maturation, ...
- Described by a system of ordinary differential equations or stochastic processes

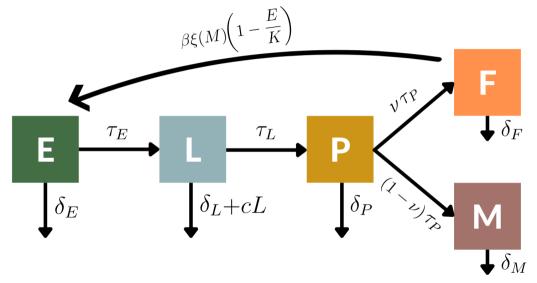


First we model!

- Each life stage will be a compartment, where we will count the number of individuals
- Parameters: birth, death, maturation, ...
- Described by a system of ordinary differential equations or stochastic processes



Modelling mosquito populations

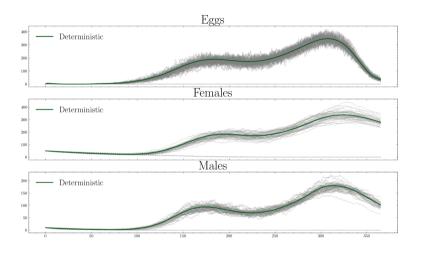


Imperial College London

The Art of Controlling

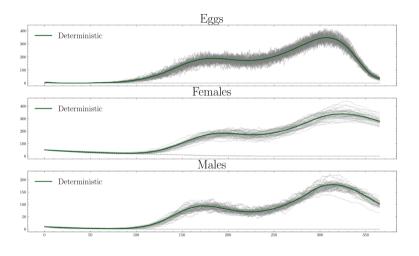
34 / 45

24/07/2025

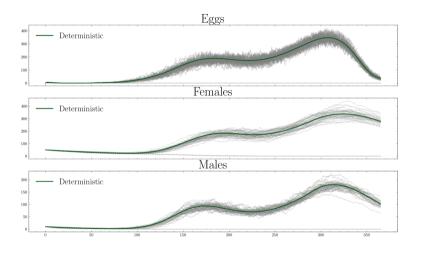


- Stochastic version of the model we saw
- Stochastic simulations capture variation and rare events
- Temperature also has a role here!
- Control: decrease the population level.

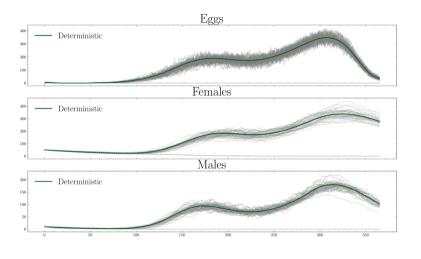
Imperial College London The Art of Controlling 35 / 45 24/07/2025



- Stochastic version of the model we saw
- Stochastic simulations capture variation and rare events
- **Temperature** also has a role here!
- Control: decrease the population level.



- Stochastic version of the model we saw
- Stochastic simulations capture variation and rare events
- Temperature also has a role here!
- Control: decrease the population level.

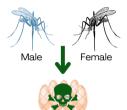


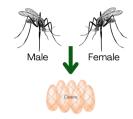
- Stochastic version of the model we saw
- Stochastic simulations capture variation and rare events
- Temperature also has a role here!
- Control: decrease the population level.

Imperial College London The Art of Controlling 35 / 45 24/07/2025

Sterile Insect Technique (SIT)

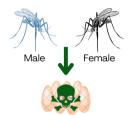
- Release of sterile males reduces future population
- Modelled as a control input in the system
- Goal: drive population to zero

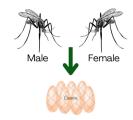




Sterile Insect Technique (SIT)

- Release of sterile males reduces future population
- Modelled as a control input in the system
- Goal: drive population to zero

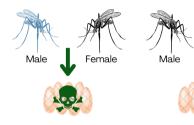




Imperial College London The Art of Controlling 36 / 45 24/07/2025

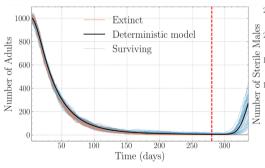
Sterile Insect Technique (SIT)

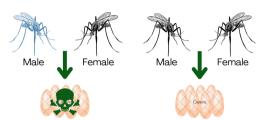
- Release of sterile males reduces future population
- Modelled as a control input in the system
- Goal: drive population to zero



Sterile Insect Technique (SIT)

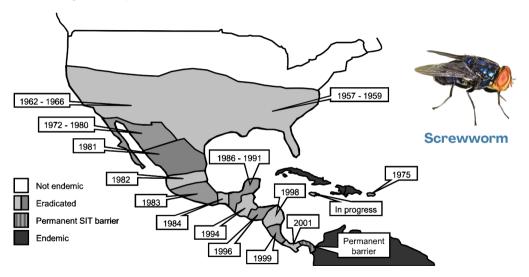
- Release of sterile males reduces future population
- Modelled as a control input in the system
- Goal: drive population to zero







Success story: mosquito control in the Americas



Steering Particle Systems

- Systems with many interacting particles arise in physics, chemistry, and machine learning
- Their behaviour can be described by stochastic differential equations and PDEs
- We use control theory to steer the system to desired states

Steering Particle Systems

- Systems with many interacting particles arise in physics, chemistry, and machine learning
- Their behaviour can be described by stochastic differential equations and PDEs
- We use control theory to steer the system to desired states

Steering Particle Systems

- Systems with many interacting particles arise in physics, chemistry, and machine learning
- Their behaviour can be described by stochastic differential equations and PDEs
- We use control theory to steer the system to desired states

How to steer particles?

The long-term behaviour of particle systems can be slow.

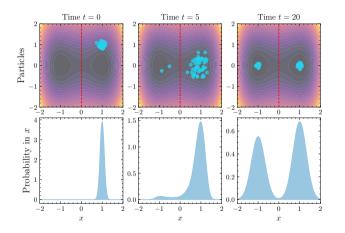


Figure: Particles in the energy landscape $V(x, y) = (x^2 - 1)^2 + y^2$

- Stochastic particle systems: models in molecular dynamics, Bayesian sampling, and collective behaviour.
- Often converges slowly, limiting efficiency.
- Our aim: develop control strategies to steer distributions towards desired targets, mainly changing the long-term behaviour.

How to steer particles?

The long-term behaviour of particle systems can be slow.

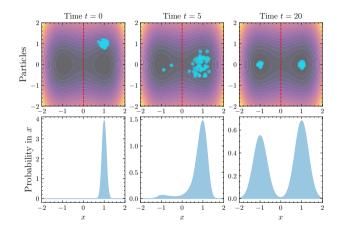


Figure: Particles in the energy landscape $V(x, y) = (x^2 - 1)^2 + y^2$

- Stochastic particle systems: models in molecular dynamics, Bayesian sampling, and collective behaviour.
- Often converges slowly, limiting efficiency.
- Our aim: develop control strategies to steer distributions towards desired targets, mainly changing the long-term behaviour.

How to steer particles?

The long-term behaviour of particle systems can be slow.

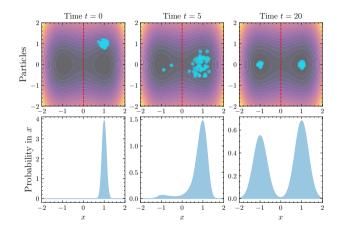


Figure: Particles in the energy landscape $V(x, y) = (x^2 - 1)^2 + y^2$

- Stochastic particle systems: models in molecular dynamics, Bayesian sampling, and collective behaviour.
- Often converges slowly, limiting efficiency.
- Our aim: develop control strategies to steer distributions towards desired targets, mainly changing the long-term behaviour.

 Start with N interacting particles moving under random noise and forces.

- As N grows, approximate the particles by a density μ(t, x).
- μ evolves as a **known** equation

$$\partial_t \mu = \underbrace{\sigma \Delta \mu}_{\text{Diffusion}} + \underbrace{\nabla \cdot (\mu \nabla V)}_{\text{Energy drift}} + \underbrace{\nabla \cdot (\mu \nabla W * \mu)}_{\text{Interaction drift}}.$$

• Now we will control μ through control functions $\mathbf{u}(\mathbf{t})$.

- Start with N interacting particles moving under random noise and forces.
- As N grows, approximate the particles by a density $\mu(\mathbf{t}, \mathbf{x})$.

• μ evolves as a **known** equation

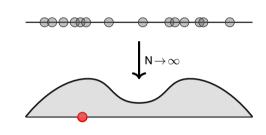
$$\partial_{\mathsf{t}} \mu = \underbrace{\sigma \Delta \mu}_{\mathsf{Diffusion}} + \underbrace{\nabla \cdot (\mu \nabla \mathsf{V})}_{\mathsf{Energy drift}} + \underbrace{\nabla \cdot (\mu \nabla \mathsf{W} * \mu)}_{\mathsf{Interaction drift}}.$$

• Now we will control μ through control functions $\mathbf{u}(\mathbf{t})$.

- Start with N interacting particles moving under random noise and forces.
- As N grows, approximate the particles by a density $\mu(\mathbf{t}, \mathbf{x})$.
- μ evolves as a **known** equation

$$\partial_{\mathsf{t}}\mu = \underbrace{\sigma\Delta\mu}_{\mathsf{Diffusion}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{V})}_{\mathsf{Energy drift}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{W}*\mu)}_{\mathsf{Interaction drift}}.$$

• Now we will control μ through control functions u(t).

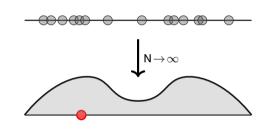


Imperial College London The Art of Controlling 40 / 45 24/07/2025

- Start with N interacting particles moving under random noise and forces.
- As N grows, approximate the particles by a density $\mu(\mathbf{t}, \mathbf{x})$.
- μ evolves as a **known** equation

$$\partial_{\mathsf{t}}\mu = \underbrace{\sigma\Delta\mu}_{\mathsf{Diffusion}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{V})}_{\mathsf{Energy drift}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{W}*\mu)}_{\mathsf{Interaction drift}}.$$

• Now we will control μ through control functions $\mathbf{u}(\mathbf{t})$.



Feedback control accelerates convergence

How we use control to steer the dynamics as we wish

Add an external force

$$V(x) \mapsto V(x) + \sum_{j=1}^{m} \frac{u_j(t)}{\alpha_j(x)},$$

- The functions α_j indicate where to act and are chosen **smartly**. Time-signals u_j are chosen **optimally**.
- Result: controlled dynamics reach equilibrium far faster (or steer to new long-term states).

Imperial College London The Art of Controlling 41 / 45 24/07/2025

Feedback control accelerates convergence

How we use control to steer the dynamics as we wish

Add an external force

$$V(x) \mapsto V(x) \; + \; \sum_{j=1}^m \frac{u_j(t)}{\alpha_j(x)},$$

- The functions α_j indicate where to act and are chosen **smartly**. Time-signals u_j are chosen **optimally**.
- Result: controlled dynamics reach equilibrium far faster (or steer to new long-term states).

Imperial College London The Art of Controlling 41 / 45 24/07/2025

Feedback control accelerates convergence

How we use control to steer the dynamics as we wish

Add an external force

$$V(x) \mapsto V(x) + \sum_{j=1}^{m} u_j(t) \alpha_j(x),$$

- The functions α_j indicate where to act and are chosen **smartly**. Time-signals u_j are chosen **optimally**.
- Result: controlled dynamics reach equilibrium far faster (or steer to new long-term states).

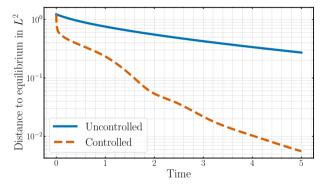


Figure: Convergence improvement for the double-well example.

Imperial College London The Art of Controlling 41/45 24/07/2025

Controlled noisy Kuramoto model

Removing the synchrony

- Coupled phase oscillators with sinusoidal interaction. Can exhibit synchronisation.
- For small K, noise dominates and the system remains desynchronised.
- For large K, oscillators synchronise; control can change this behaviour.
 The same idea can be applied to other systems, such as in ecology.

Imperial College London The Art of Controlling 42 / 45 24/07/2025

Controlled noisy Kuramoto model

Removing the synchrony

- Coupled phase oscillators with sinusoidal interaction. Can exhibit synchronisation.
- For small K, noise dominates and the system remains desynchronised.
- For large K, oscillators synchronise; control can change this behaviour.
 The same idea can be applied to other systems, such as in ecology.

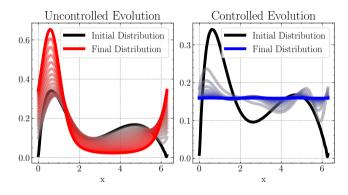


Figure: Consider $\Omega = [0, 2\pi)$, V(x) = 0, $W(x) = -K \cos(x)$

Take-aways and next steps

Key Take-Aways

- PDE-based control can accelerate convergence and reshape distributions.
- Simulations show the method **stabilises** different long-term states.

Next Steps

- Extend to high-dimensional and kinetic PDEs for real-world applications.
- Robustness analysis given the uncertainty of the model.

Imperial College London The Art of Controlling 43 / 45 24/07/2025

Take-aways and next steps

Key Take-Aways

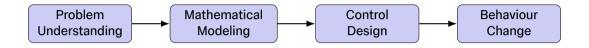
- PDE-based control can accelerate convergence and reshape distributions.
- Simulations show the method **stabilises** different long-term states.

Next Steps

- Extend to high-dimensional and kinetic PDEs for real-world applications.
- Robustness analysis given the uncertainty of the model.

Imperial College London The Art of Controlling 43 / 45 24/07/2025

Wrapping up: the art of controlling



By **understanding** a system, **modelling** its dynamics, and designing the right **controls**, we can change how it **behaves**.

In every domain: epidemics, ecology, engineering, ...

IMPERIAL

Thank you! Questions?

The Art of Controlling 24/07/2025

A Brief Bibliography

- Sussmann, H. J. and Willems, J. C., 1997. 300 Years of Optimal Control: From the Brachistochrone to the Maximum Principle. IEEE Control Systems Magazine.
- Vinter, R. B., 2010. Optimal Control. Birkhäuser.
- Liberzon, D., 2011. Calculus of Variations and Optimal Control Theory. Princeton University Press.
- Lenhart, S. and Workman, J. T., 2007. Optimal Control Applied to Biological Models. Chapman & Hall/CRC.
- Schättler, H. and Ledzewicz, U., 2012. Geometric Optimal Control: Theory, Methods, and Examples. Springer.
- Bressan, A. and Piccoli, B., 2007. Introduction to the Mathematical Theory of Control.
 American Institute of Mathematical Sciences.

Imperial College London The Art of Controlling 1/2 24/07/2025

- We look for a curve: $x \mapsto (x, y(x))$
- By the Law of Conservation of Energy

$$\frac{\mathsf{mv}(\mathsf{x})^2}{2} - \mathsf{mgy}(\mathsf{x}) = 0 \implies \mathsf{v}(\mathsf{x}) = \sqrt{2\mathsf{gy}(\mathsf{x})}$$

where v is the velocity of the ball, m is the mass, and g is the gravity constant

• The needed time is given by

$$T = \int_{s_a}^{s_b} \frac{ds}{v} = \int_a^b \frac{\sqrt{1+y'(x)^2}}{\sqrt{2gy(x)}} dx$$

• Problem:

- We look for a curve: $x \mapsto (x, y(x))$
- By the Law of Conservation of Energy

$$\frac{\mathsf{mv}(\mathsf{x})^2}{2} - \mathsf{mgy}(\mathsf{x}) = 0 \implies \mathsf{v}(\mathsf{x}) = \sqrt{2\mathsf{gy}(\mathsf{x})},$$

where v is the velocity of the ball, m is the mass, and a is the gravity constant

The needed time is given by

$$T = \int_{s_a}^{s_b} \frac{ds}{v} = \int_a^b \frac{\sqrt{1+y'(x)^2}}{\sqrt{2gy(x)}} dx$$

Problem:

2/2

- We look for a curve: $x \mapsto (x, y(x))$
- By the Law of Conservation of Energy

$$\frac{\mathsf{mv}(\mathsf{x})^2}{2} - \mathsf{mgy}(\mathsf{x}) = 0 \implies \mathsf{v}(\mathsf{x}) = \sqrt{2\mathsf{gy}(\mathsf{x})},$$

where v is the velocity of the ball, m is the mass, and g is the gravity constant

The needed time is given by

$$T = \int_{s_a}^{s_b} \frac{ds}{v} = \int_a^b \frac{\sqrt{1+y'(x)^2}}{\sqrt{2gy(x)}} dx$$

• Problem:

- We look for a curve: $x \mapsto (x, y(x))$
- By the Law of Conservation of Energy

$$\frac{\mathsf{mv}(\mathsf{x})^2}{2} - \mathsf{mgy}(\mathsf{x}) = 0 \implies \mathsf{v}(\mathsf{x}) = \sqrt{2\mathsf{gy}(\mathsf{x})},$$

where v is the velocity of the ball, m is the mass, and g is the gravity constant

• The needed time is given by

$$T=\int_{s_a}^{s_b} rac{ds}{v} = \int_a^b rac{\sqrt{1+y'(x)^2}}{\sqrt{2gy(x)}} dx$$

• Problem: $\min \int_a^b \sqrt{\frac{1+y'(x)^2}{2gy(x)}} \, dx$ such that $y(a)=y_0$ and $y(b)=y_1$

- We look for a curve: $x \mapsto (x, y(x))$
- By the Law of Conservation of Energy

$$\frac{\mathsf{mv}(\mathsf{x})^2}{2} - \mathsf{mgy}(\mathsf{x}) = 0 \implies \mathsf{v}(\mathsf{x}) = \sqrt{2\mathsf{gy}(\mathsf{x})},$$

where v is the velocity of the ball, m is the mass, and g is the gravity constant

• The needed time is given by

$$T = \int_{s_a}^{s_b} \frac{ds}{v} = \int_a^b \frac{\sqrt{1+y'(x)^2}}{\sqrt{2gy(x)}} dx$$

• Problem: $\min \int_a^b \mathbf{L}(\mathbf{x}, \mathbf{y}(\mathbf{x}), \mathbf{y}'(\mathbf{x})) dx$ such that $y(a) = y_0$ and $y(b) = y_1$