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How it all began...
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https://www.youtube.com/watch?v=qp1Zx0ObdjQ


What is this talk about?

A journey from classical mechanics tomodern control theory. All
with something inmind: modelling

We’ll touch on:

l My own path into this field

l Real-worldmotivations from biology, engineering, and physics

l Howmathematics helps us influence the behaviour of systems

l The core ideas behind control theory
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“The ultimate proof of our understanding of

natural or technological systems is reflected

in our ability to control them.”

Liu, Slotine & Barabási (2011)1

1Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. Controllability of complex networks, Nature, 473, 167–173 (2011).
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Themathematical landscape: a view from Paris
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A bit about my path

The Art of Controlling
24/07/2025



Journey for the mathematics
A background on my studies
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Journey for the mathematics
Challenges

l Switching fields: Adapting in different areas from mathematics

l Cultural barriers: Studying in Portuguese, French, and English

l Imposter feelings: Joining new research environments and learning to trust
my ideas (also having them!)

l Loneliness in research: Building confidence when progress is slow and
unclear

l Communication: Talking to peers in conferences and events
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Journey for the mathematics
My academic mentors

Main Supervisors

M. Soledad Aronna (MSc)

Camille Coron (MSc) Greg Pavliotis (PhD)

Luis Almeida (MSc) Dante Kalise (PhD)
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Work fromMSc in Brazil

M. Soledad Aronna

l Mathematical modelling of infectious diseases

l Particular application to COVID-19: quarantine, isolation,
and testing

l Optimal distribution of vaccines in metropolitan areas

l Areas: Differential Equations, Optimisation, Functional
Analysis, Statistics, Programming, ...
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Work fromMSc in France

Camille Coron

Luis Almeida

l Population dynamics of mosquitoes

l Formulation of biological methods to reduce them

l Applications in Cuba and French Polynesia

l Areas: Probability, Stochastic Differential Equations,
Data Analysis, Biology, ...
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Work from PhD in the UK

Greg Pavliotis

Dante Kalise

l Studying how probability distributions and interacting
particles evolve over time

l Designing ways to change their behaviour using
mathematical tools

l Applications in physics, chemistry, and data science,
especially in sampling for research simulations

l Areas: Functional Analysis, Partial Differential Equations,
Numerical Analysis, Stochastic Differential Equations, ...
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Andwhat is at the centre of all this?



Andwhat is at the centre of all this?
Control Theory.



Ceilidh Dance
From local rules to global behaviour

l A traditional Scottish dance with a
caller who steers the choreography
(pattern)

l Local interactions lead to global co-
ordination

l Wemodel the agents with stochas-
tic differential equations (SDEs)

l The control is the caller, changing
the patterns

Photo © Dave Conner (CC BY 4.0) – clip-art adaptation by L. Moschen.
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A glimpse on the history

The Art of Controlling
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The Brachistochrone curve
Johann Bernoulli, 1696

Johann Bernoulli (1667–1748)

“In a vertical plane, two points A and B are
given. The task is to find the trajectory of
a moving particle M such that, starting from
point A and under the influence of its own
weight, it reachespointB in the shortest pos-
sible time.”2

2Johann Bernoulli, “Problema novum ad cujus solutionemMathematici invitantur” (1696)
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The Brachistochrone curve
Johann Bernoulli, 1696
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Brachistochrone curve
Best curve: tf = 1.14s
Straight curve: tf = 1.42s
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Calculus of variations
The general problem in 1D

For each x ∈ [a,b], we choose the value of the function y′(x). The resulting curve should be
continuous, start at y0 and end at y1, leading to

min
∫ b

a
L(x, y(x), y′(x))dx

s. t. y(a) = y0, y(b) = y1.
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From Calculus of Variations to Optimal Control

Calculus of Variations

min /max
∫ b

a
L(x, y(x), y′(x))dx

subject to y smooth
y(a) = y0, y(b) = y1

⇒
Optimal Control

min /max
∫ T

0

L(t, x(t), u(t))dt+Ψ(T, x(T))

subject to ẋ(t) = f(t, x(t), u(t)),
x(0) = x0, x(T) = x1
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Optimal control and stabilisation diagram

State dynamics
x′(t) = f(x, u)
(x, u) ∈ K

Cost functional∫ T

0

L(x, u) dt+Ψ(T, x(T))
Target behaviour

x(t) → x∗

Optimal control:
Find u minimizing cost

Stabilisation:
Design u so that x(t) → x∗

u

(x, u) (x, u)

L u = f(x) (feedback)
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Control is everywhere
Applications across disciplines

Engineering: Control-
ling trajectories and
combining sensor data
in self-driving cars
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return in dynamic
markets
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Let us practice a bit!
Fishing as a control problem

Problem
Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: model the problem. What are the relevant variables?

x(t) := number of fish in a lake at time t

u(t) := number of fish caught at time t

Population dynamics (with fishing):

ẋ(t) = r x(t)
(
1− x(t)

k

)
− u(t),

r: growth rate; r x(t)/k: death rate by competition
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Problem
Given a fish population, we aim to maximize the fishing profit over a fixed time interval.

The first thing is: model the problem. What are the relevant variables?

x(t) := number of fish in a lake at time t

u(t) := number of fish caught at time t

Population dynamics (with fishing):

ẋ(t) = r x(t)
(
1− x(t)

k

)
− u(t),

r: growth rate; r x(t)/k: death rate by competition

Logistic growth
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What is the profit up to time T?

Each fish is sold at a price E, generating revenue Eu(t). Fishing has an associated cost: the fewer
fish in the lake, the harder it is to catch one. We model the unit cost as c/x(t).

Therefore, the total profit over [0,T] is

Profit :=
∫ T

0

(
Eu(t)− c

x(t)
u(t)

)
dt

Complete optimal control problem:

max
∫ T

0

(
Eu(t)− c

x(t)
u(t)

)
dt

subject to ẋ(t) = rx(t)
(
1− x(t)

k

)
− u(t),

0 ≤ u(t) ≤ Umax, x(t) ≥ 0, for t ∈ [0,T],
x(0) = x0, x(T) ≥ xmin.
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Interesting problems
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Optimal Vaccination Strategies
l Epidemics are a complicated prob-
lem, especially inmetropolises

l Mathematicalmodelshelp describe
and predict disease spread

l Vaccination is a reliable way to con-
trol outbreaks with minimal disrup-
tion

l The goal is to optimally allocate a lim-
ited supply of vaccines
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Epidemics in complex cities
Welcome to Rio de Janeiro metropolitan area!

l More people, more
contacts.

l Intercity commuting
increases the spread

l Vaccination should
consider the spatial
distribution
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Modelling is the first task!
How commuting and epidemics interact?

l Cities are nodes,
commuting are
connections

l During the day, disease
spreads among cities

l During the night,
disease spreadswithin
cities

Imperial College London The Art of Controlling 28 / 45 24/07/2025



What is the optimal vaccination strategy?
Aim
Use vaccination to reduce the burden of disease in a metropolitan area.

We add a vaccination rate ui(t) for each city, so

S′
i (t) = −αβiSi(t)Ii(t)− (1− α)

K∑
j=1

βj(pijSi(t))Ieffj (t)− ui(t)Si(t)

Trade-off: health impact (e.g., number of infected, number of deaths)× cost of vaccination.

Burden of disease := ch
∫ T

0

K∑
i=1

niIi(t)dt + Vaccination cost := cv
∫ T

0

K∑
i=1

niui(t)dt

Vaccination constraints: 0 ≤ ui(t)Si(t) ≤ vmax
i ,

∫ t
0

∑K
i=1 niui(τ)Si(τ)dτ ≤ Vweekly(t)

This problem has no closed-form solution. We solve it numerically.
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From numerical experiments to theoretical results

Observation: simulations showed that the optimal vaccination strategy switches between
maximum effort and no effort. This is known in control theory as a bang-bang strategy.

Theorem: For the optimal control problem with constraints, the function ui(t)Si(t) is 0 or its
maximum vmax

i . Moreover, in each week it cannot grow!

Personally rewarding: the moment when numerics and theory align.
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What did we learn from vaccination control?

l Optimal control
strategies reduce
infection spread

l Modelling and
optimisation make
real-world policies more
effective

l We can apply theory in
real-world problems!
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ControllingMosquito Populations
l Mosquitoesare vectorsof seriousdis-
eases like dengue, Zika, and chikun-
gunya

l Population dynamics can be mod-
elledmathematically to evaluate con-
trol strategies

l We aim to reduce populations by re-
leasing sterile males
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Mosquito life cycle
First we model!

l Each life stage will be a compartment,
wherewewillcount the number of individ-
uals

l Parameters: birth, death, maturation, ...

l Described by a system of ordinary differ-
ential equations or stochastic processes
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Modelling mosquito populations
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Including uncertainty in mosquito dynamics

l Stochastic version of
the model we saw

l Stochastic simulations
capture variation and
rare events

l Temperature also has a
role here!

l Control: decrease the
population level.

Imperial College London The Art of Controlling 35 / 45 24/07/2025



Including uncertainty in mosquito dynamics

l Stochastic version of
the model we saw

l Stochastic simulations
capture variation and
rare events

l Temperature also has a
role here!

l Control: decrease the
population level.

Imperial College London The Art of Controlling 35 / 45 24/07/2025



Including uncertainty in mosquito dynamics

l Stochastic version of
the model we saw

l Stochastic simulations
capture variation and
rare events

l Temperature also has a
role here!

l Control: decrease the
population level.

Imperial College London The Art of Controlling 35 / 45 24/07/2025



Including uncertainty in mosquito dynamics

l Stochastic version of
the model we saw

l Stochastic simulations
capture variation and
rare events

l Temperature also has a
role here!

l Control: decrease the
population level.

Imperial College London The Art of Controlling 35 / 45 24/07/2025



How dowe control them?
Sterile Insect Technique (SIT)

l Release of sterile males reduces future
population

l Modelled as a control input in the system
l Goal: drive population to zero
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Success story: mosquito control in the Americas
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Steering Particle Systems
l Systems with many interacting parti-
cles arise in physics, chemistry, and
machine learning

l Their behaviour can be described by
stochastic differential equations and
PDEs

l We use control theory to steer the
system to desired states
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How to steer particles?
The long-term behaviour of particle systems can be slow.
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Figure: Particles in the energy landscape V(x, y) = (x2 − 1)2 + y2

l Stochastic particle systems:
models in molecular dynamics,
Bayesian sampling, and collective
behaviour.

l Often converges slowly, limiting
efficiency.

l Our aim: develop control strate-
gies to steer distributions towards
desired targets, mainly changing
the long-term behaviour.
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From particles to themean-field limit and control

Particles Density µ(x, t) Controlled dynamicsN → ∞ External control

l Start with N interacting particles moving under ran-
dom noise and forces.

l As N grows, approximate the particles by a density
µ(t, x).

l µ evolves as a known equation

∂tµ = σ∆µ︸︷︷︸
Diffusion

+ ∇ · (µ∇V)︸ ︷︷ ︸
Energy drift

+ ∇ · (µ∇W ∗ µ)︸ ︷︷ ︸
Interaction drift

.

l Nowwewill control µ through control functions u(t).

Imperial College London The Art of Controlling 40 / 45 24/07/2025



From particles to themean-field limit and control

Particles Density µ(x, t) Controlled dynamicsN → ∞ External control

l Start with N interacting particles moving under ran-
dom noise and forces.

l As N grows, approximate the particles by a density
µ(t, x).

l µ evolves as a known equation

∂tµ = σ∆µ︸︷︷︸
Diffusion

+ ∇ · (µ∇V)︸ ︷︷ ︸
Energy drift

+ ∇ · (µ∇W ∗ µ)︸ ︷︷ ︸
Interaction drift

.

l Nowwewill control µ through control functions u(t).

N→∞

Imperial College London The Art of Controlling 40 / 45 24/07/2025



From particles to themean-field limit and control

Particles Density µ(x, t) Controlled dynamicsN → ∞ External control

l Start with N interacting particles moving under ran-
dom noise and forces.

l As N grows, approximate the particles by a density
µ(t, x).

l µ evolves as a known equation

∂tµ = σ∆µ︸︷︷︸
Diffusion

+ ∇ · (µ∇V)︸ ︷︷ ︸
Energy drift

+ ∇ · (µ∇W ∗ µ)︸ ︷︷ ︸
Interaction drift

.

l Nowwewill control µ through control functions u(t).

N→∞

Imperial College London The Art of Controlling 40 / 45 24/07/2025



From particles to themean-field limit and control

Particles Density µ(x, t) Controlled dynamicsN → ∞ External control

l Start with N interacting particles moving under ran-
dom noise and forces.

l As N grows, approximate the particles by a density
µ(t, x).

l µ evolves as a known equation

∂tµ = σ∆µ︸︷︷︸
Diffusion

+ ∇ · (µ∇V)︸ ︷︷ ︸
Energy drift

+ ∇ · (µ∇W ∗ µ)︸ ︷︷ ︸
Interaction drift

.

l Nowwewill control µ through control functions u(t).

N→∞

Imperial College London The Art of Controlling 40 / 45 24/07/2025



Feedback control accelerates convergence
Howwe use control to steer the dynamics as we wish

l Add an external force

V(x) 7→ V(x) +

m∑
j=1

uj(t)αj(x),

l The functions αj indicate where to act and
are chosen smartly. Time-signals uj are
chosen optimally.

l Result: controlled dynamics reach equi-
librium far faster (or steer to new long-term
states).
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Controlled noisy Kuramotomodel
Removing the synchrony

l Coupled phase oscillators with si-
nusoidal interaction. Can exhibit
synchronisation.

l For small K, noise dominates and
the system remains desynchro-
nised.

l For large K, oscillators synchronise;
control can change this behaviour.
The same idea can be applied to
other systems, such as in ecology.
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Figure: ConsiderΩ = [0, 2π), V(x) = 0, W(x) = −K cos(x)
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Take-aways and next steps

Key Take-Aways

l PDE-based control can accelerate convergence and reshape distributions.
l Simulations show the method stabilises different long-term states.

Next Steps

l Extend to high-dimensional and kinetic PDEs for real-world applications.
l Robustness analysis given the uncertainty of the model.

Imperial College London The Art of Controlling 43 / 45 24/07/2025



Take-aways and next steps

Key Take-Aways

l PDE-based control can accelerate convergence and reshape distributions.
l Simulations show the method stabilises different long-term states.

Next Steps

l Extend to high-dimensional and kinetic PDEs for real-world applications.
l Robustness analysis given the uncertainty of the model.

Imperial College London The Art of Controlling 43 / 45 24/07/2025



Wrapping up: the art of controlling

Problem
Understanding

Mathematical
Modeling

Control
Design

Behaviour
Change

By understanding a system,modelling its dynamics,
and designing the right controls, we can change how it

behaves.

In every domain: epidemics, ecology, engineering, ...
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Thank you! Questions?

The Art of Controlling
24/07/2025
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Let us see themaths behind the Brachistochrone curve.

l We look for a curve: x 7→ (x, y(x))

l By the Law of Conservation of Energy

mv(x)2

2
−mgy(x) = 0 =⇒ v(x) =

√
2gy(x),

where v is the velocity of the ball, m is the mass, and g is the gravity constant

l The needed time is given by

T =

∫ sb

sa

ds
v

=

∫ b

a

√
1 + y′(x)2√
2gy(x)

dx

l Problem:
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