# IMPERIAL

## Steering Probability Distributions with **Optimal Control**

Lucas M. Moschen

**Supervised by Greg Pavliotis and Dante Kalise** 

Department of Mathematics, Imperial College London



✓ Goal: Analyse the evolution of stochastic systems and steer the probability distri**butions** to desired states.

### √ Why it matters

- Guide agent-based systems in meanfield settings.
- Speed up **sampling** from simulations.
- Stabilise or switch **metastable** states.

#### √ How we do it

- Spectral discretisation turns a PDE into an ODE system.
- Design an open-loop time-varying control or a **closed-loop** feedback law.

### **Background & Motivation**

- √ Why mean-field models? Large systems are best described by their **density** rather than by tracking each individual:
  - Pedestrians in a plaza → crowd flow
  - Ideas in a network → density of viewpoints
  - Molecules in a solvent → probability clouds

### √ Control challenges:

- Use an external controller to reshape the mean-field distribution as desired.
- Achieve fast, low-cost influence over col- subject to the PDE constraint lective behaviour.



**Figure 1:** Evolution of particles with potential  $V(x,y)=(x^2-1)/4^2+y^2/2$  at times t=0,5,20 (left), and their x-marginal

### **Mathematical Background**

densities (right). The red dot marks the average position

We study overdamped **Langevin** dynamics

$$dX_t = -\left(\nabla V(X_t) + \nabla W * \mu(X_t, t)\right) dt + \sqrt{2\sigma} dW_t,$$

where the blue term is the interaction poten**tial** with the distribution  $\mu(\cdot,t)$  of  $X_t$  and

$$\nabla W * \mu(x,t) := \int_{\mathbb{R}^d} \nabla W(x-y)\mu(y,t) \, dy.$$

### Schematic Overview of Our Control Framework



### **Fokker-Planck and McKean-Vlasov**

The associated density  $\mu(x,t)$  evolves as

$$\partial_t \mu = \nabla \cdot \left( \mu \, \nabla V + \mu \, (\nabla W * \mu) \right) + \sigma \, \Delta \mu.$$

- ✓ Non-linear/non-local term  $\mu(\nabla W * \mu)$ .
- √ Slow convergence, especially when multiple equilibria exist.
- √ Interaction potential can produce unstable stationary states.

## **Optimal Control Approach**

Steer  $\mu(\cdot,t)$  toward the target  $\mu^{\dagger}$  by minimising

$$J(u) := \frac{1}{2} \int_0^T \left( \|\mu(\cdot, t) - \mu^{\dagger}\|_{L^2}^2 + \nu \|u(t)\|^2 \right) dt,$$

$$\partial_t \mu = \mathcal{A}\mu + \mathcal{W}(\mu) + u \mathcal{N}\mu,$$

where  $\mathcal{A}$  includes the diffusion and drift,  $\mathcal{W}$  the interaction, and the control u(t) acts via  $\mathcal{N}\phi:=$  $\nabla \cdot (\phi \nabla \alpha)$  for a chosen function  $\alpha$ . In other words, adding  $u(t) \alpha(x)$  "pushes" V into

$$V(x) + u(t) \alpha(x)$$
.

### **Method Summary**

- √ Choose a suitable spectral basis of functions (e.g.,  $L^2$ -orthonormal, periodic).
- $\checkmark$  Expand  $\mu(x,t)$  in this basis to reduce the PDE to a **finite-dimensional** ODE system.
- √ Apply the optimal control via Pontryagin- or Riccati-based methods on the reduced system to steer  $\mu$  to  $\mu^{\dagger}$ .
- √ Use the control in the original dynamics.

### **Numerical Results**

- √ The Kuramoto model describes coupled oscillator dynamics and exhibits bistability, making its behaviour highly sensitive to initial conditions.
- √ The ill-conditioned Gaussian is a diffusionbased model with a small spectral gap, leading to slow convergence.

### **1D Kuramoto Model**

Our feedback control efficiently switches the system between two stable equilibria.



**Jure 2:** Distribution evolution in the Kuramoto model with  $W(x)=-5\cos(x)$  and G(x)=0. Twenty snapshots show the nitial state (black) transitioning to red (uncontrolled) and blue (controlled) equilibria.

### **Ill-conditioned 2D Gaussian**

Time to reach equilibrium can be reduced significantly by applying an open-loop control.



 $x^2$ -norm of the difference to the equilibrium with potential  $V(x,y)=rac{1}{2}(x^2+0.1y^2)$  and W(x,y)=0. One to four

### **Conclusions & Take-Home**

- ✓ PDE-based control can accelerate convergence and shape distributions.
- ✓ Simulations show the method **stabilises** metastable states in challenging regimes.
- √ Future: solve high-dimensional problems.

### **Key References**

- ✓ Albi, G., Choi, Y.-P., Fornasier, M., Kalise, D. "Mean-Field Control Hierarchy". 2017.
- ✓ Breiten, T., Kunisch, K., Pfeiffer, L. "Control Strategies for the Fokker-Planck Equation". 2018.
- ✓ Kalise, D., Moschen, L., Pavliotis, G., Vaes, U. "A Spectral Approach to Optimal Control of the Fokker-Planck Equation". 2025.

### **Funders**



