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v' Goal: Analyse the evolution of stochastic
systems and steer the probability distri-
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v  How we do it
- Spectral discretisation turns a PDE into
an ODE system.
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Fokker-Planck and McKean-Viasov

| | | The associated density y(x, t) evolves as
- Design an open-loop time-varying con-

trol or a closed-loop feedback law.
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v Non-linear/non-local term u (VW x ).

v' Slow convergence, especially when multiple
equilibria exist.

v_ Interaction potential can produce unstable
stationary states.

Background & Motivation

v Why mean-field models? Large systems are
best described by their density rather than
by tracking each individual:

- Pedestrians in a plaza » crowd flow

Optimal Control Approach

- |ldeas in a network - density of viewpoints

- Molecules in a solvent = probability clouds
v' Control challenges:
- Use an external controller to reshape the
mean-field distribution as desired.

Steer u(-,t) toward the target ;' by minimising
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- Achieve fast, low-cost influence over col-

lective behaviour.
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Figure 1: Evolution of particles with potential V (z,y) = (22 — 1)/42 + y*/2 at times t = 0, 5, 20 (left), and their z-marginal
densities (right). The red dot marks the average position.

Numerical Results

Mathematical Background

We study overdamped Langevin dynamics v The Kuramoto model describes coupled os-

cillator dynamics and exhibits bistability,
making its behaviour highly sensitive to initial
conditions.

v The ill-conditioned Gaussian is a diffusion-
based model with a small spectral gap, lead-
ing to slow convergence.

dX; = — (VV(Xt) VW ok u(X, t)) dt + /20 AW,

where the blue term is the interaction poten-
tial with the distribution (-, t) of X; and

VW s p(x,t) = g VW(x —y)uly, ) dy.
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1D Kuramoto Model
Our feedback control efficiently switches the
system between two stable equilibria.
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Figure 2: Distribution evolution in the Kuramoto model with W (z) = —5cos(z) and G(z) = 0. Twenty snapshots show the
initial state (black) transitioning to red (uncontrolled) and blue (controlled) equilibria.

lll-conditioned 2D Gaussian
Time to reach equilibrium can be reduced sig-
nificantly by applying an open-loop control.
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Figure 3: L2-norm of the difference to the equilibrium with potential V (z,y) = (2* + 0.1y*) and W (z, y) = 0. One to four

control functions were used with pre-determined « functions.

Conclusions & Take-Home

v PDE-based control can accelerate conver-
gence and shape distributions.

v’ Simulations show the method stabilises
metastable states in challenging regimes.

v Future: solve high-dimensional problems.
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