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✓Goal: Analyse the evolution of stochastic
systems and steer theprobabilitydistri-
butions to desired states.

✓Why it matters
– Guide agent-based systems in mean-
field settings.

– Speed up sampling from simulations.
– Stabilise or switchmetastable states.

✓Howwe do it
– Spectraldiscretisation turns aPDE into
an ODE system.

– Design an open-loop time-varying con-
trol or a closed-loop feedback law.

Background &Motivation
✓Whymean-fieldmodels? Large systemsare
best described by their density rather than
by tracking each individual:
– Pedestrians in a plaza → crowd flow
– Ideas in a network → density of viewpoints
– Molecules in a solvent → probability clouds

✓Control challenges:
– Use an external controller to reshape the
mean-field distribution as desired.

– Achieve fast, low-cost influence over col-
lective behaviour.
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Figure 1: Evolution of particles with potential V (x, y) = (x2 − 1)/42 + y2/2 at times t = 0, 5, 20 (left), and their x-marginal
densities (right). The red dot marks the average position.

Mathematical Background
We study overdamped Langevin dynamics

dXt = −
(
∇V (Xt) +∇W ∗ µ(Xt, t)

)
dt +

√
2σ dWt,

where the blue term is the interaction poten-
tialwith the distribution µ(·, t) ofXt and

∇W ∗ µ(x, t) :=
∫
Rd

∇W (x− y)µ(y, t) dy.

Schematic Overview of Our Control Framework
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Fokker-Planck andMcKean-Vlasov
The associated density µ(x, t) evolves as

∂tµ = ∇ ·
(
µ∇V + µ

(
∇W ∗ µ

))
+ σ∆µ.

✓Non-linear/non-local term µ(∇W ∗ µ).
✓Slow convergence, especially when multiple
equilibria exist.

✓ Interaction potential can produce unstable
stationary states.

Optimal Control Approach

Steer µ(·, t) toward the target µ† by minimising

J(u) :=
1

2

∫ T

0

(
∥µ(·, t)− µ†∥2L2 + ν∥u(t)∥2

)
dt,

subject to the PDE constraint

∂tµ = Aµ +W(µ) + uNµ,

whereA includes the diffusion and drift,W the
interaction, and the control u(t) acts via Nϕ :=

∇ · (ϕ∇α) for a chosen function α. In other
words, adding u(t)α(x) “pushes” V into

V (x) + u(t)α(x).

Method Summary
✓Choose a suitable spectral basis of func-
tions (e.g., L2-orthonormal, periodic).

✓Expand µ(x, t) in this basis to reduce the PDE
to a finite-dimensional ODE system.

✓Apply the optimal control via Pontryagin– or
Riccati–based methods on the reduced sys-
tem to steer µ to µ†.

✓Use the control in the original dynamics.

Numerical Results
✓The Kuramotomodel describes coupled os-
cillator dynamics and exhibits bistability,
making its behaviour highly sensitive to initial
conditions.

✓The ill-conditioned Gaussian is a diffusion-
based model with a small spectral gap, lead-
ing to slow convergence.

m

1D KuramotoModel
Our feedback control efficiently switches the
system between two stable equilibria.
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Figure 2: Distribution evolution in the Kuramotomodel withW (x) = −5 cos(x) andG(x) = 0. Twenty snapshots show the
initial state (black) transitioning to red (uncontrolled) and blue (controlled) equilibria.

Ill-conditioned 2D Gaussian
Time to reach equilibrium can be reduced sig-
nificantly by applying an open-loop control.
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Figure 3: L2-norm of the difference to the equilibrium with potential V (x, y) = 1
2(x

2 + 0.1y2) andW (x, y) = 0. One to four
control functions were used with pre-determined α functions.

Conclusions & Take-Home
✓PDE-based control can accelerate conver-
gence and shape distributions.

✓Simulations show the method stabilises
metastable states in challenging regimes.

✓Future: solve high-dimensional problems.
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