IMPERIAL

16th Viennese Conference on Optimal Control and Dynamic Games

Feedback stabilisation for the McKean-Vlasov equation

Controlling the long-time behavior of interacting particle systems

Dante Kalise, Lucas M. Moschen, Greg Pavliotis

This project is supported by the CNRS-ICL PhD program.

Ceilidh Dance

From local rules to global behaviour

- A traditional Scottish dance with a caller who steers the choreography (pattern).
- Local interactions lead to global coordination
- We model the agents with stochastic differential equations (SDEs)
- In the limit of many agents, the probability density follows a PDE: the McKean-Vlasov equation

Photo © Dave Conner (CC BY 4.0) - clip-art adaptation by L. Moschen.

The McKean-Vlasov Equation¹²

$$\partial_{\mathsf{t}}\mu = \underbrace{\sigma\Delta\mu}_{\mathsf{Diffusion}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{V})}_{\mathsf{External\,drift}} + \underbrace{\nabla\cdot(\mu\nabla\mathsf{W}*\mu)}_{\mathsf{Interaction\,drift}}$$

- $\mu(t, x)$: evolution of the density of agents
- W(x): introduces nonlinearity and nonlocality through $(\nabla W*y)(x):=\int_{\Omega} \nabla W(x-x')\,y(x')\,dx'$
- ullet Fokker-Planck PDE for the McKean-Vlasov SDE where the drift depends on the law μ

¹A.-S. Sznitman, Topics in propagation of chaos, Lecture Notes in Mathematics, vol. 1464, Springer, 1991.

²J.A. Carrillo, R.J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations, Rev. Mat. Iberoamericana, 2003.

Why Control Interacting Systems?

Motivations for feedback design

- Uncontrolled systems:
 - Possible slow convergence to the long-term (small spectral gap)
 - Converge to an undesirable equilibrium
- Our goals:
 - Accelerate convergence to a desired steady state
 - Steer the system toward or away from specific modes
- Solution approach
 - Introduce time-dependent feedback potentials into the PDE dynamics
 - Based on Breiten, Kunisch, and Pfeiffer's work³

Why Control Interacting Systems?

Motivations for feedback design

- Uncontrolled systems:
 - Possible slow convergence to the long-term (small spectral gap)
 - Converge to an undesirable equilibrium
- Our goals:
 - Accelerate convergence to a desired steady state
 - Steer the system toward or away from specific modes
- Solution approach:
 - Introduce time-dependent feedback potentials into the PDE dynamics
 - Based on Breiten, Kunisch, and Pfeiffer's work³

Why Control Interacting Systems?

Motivations for feedback design

- Uncontrolled systems:
 - Possible slow convergence to the long-term (small spectral gap)
 - Converge to an undesirable equilibrium
- Our goals:
 - Accelerate convergence to a desired steady state
 - Steer the system toward or away from specific modes
- Solution approach:
 - Introduce time-dependent feedback potentials into the PDE dynamics
 - Based on Breiten, Kunisch, and Pfeiffer's work³

³T. Breiten, K. Kunisch, and L. Pfeiffer. Control strategies for the Fokker-Planck equation. ESAIM: COCV, 2018.

Overview of Our Approach

From Interacting Particles to the Mean-Field PDE

Agent-based model: each of N agents evolve according to

$$dX_i(t) = -\nabla V(X_i)\,dt - \frac{1}{N}\sum_{j=1}^N \nabla W(X_i - X_j)\,dt + \sqrt{2\sigma}\,dB_i(t)$$

• **Mean-field limit** N $\rightarrow \infty$: overdamped regime

$$\partial_{\mathsf{t}}\mu = \nabla \cdot (\sigma \nabla \mu + \mu(\nabla \mathsf{V} + \nabla \mathsf{W} * \mu)), \quad \mathsf{t} > 0, \, \mathsf{x} \in \Omega$$

- Conditions:
 - We consider $\Omega = \mathbb{R}^n$, with decay, or $\Omega = \mathbb{T}^n$, with periodic boundary conditions
 - We ask $W \in W^{2,\infty}(\Omega)$ and $V \in C^2(\Omega)$. If $\Omega = \mathbb{R}^n$,

$$\lim_{|\mathbf{x}| \to \infty} \frac{1}{4\sigma} |\nabla V(\mathbf{x})|^2 - \frac{1}{2} \Delta V(\mathbf{x}) = \infty$$

From Interacting Particles to the Mean-Field PDE

Agent-based model: each of N agents evolve according to

$$dX_i(t) = -\nabla V(X_i) \, dt - \frac{1}{N} \sum_{j=1}^N \nabla W(X_i - X_j) \, dt + \sqrt{2\sigma} \, dB_i(t)$$

• Mean-field limit N $ightarrow \infty$: overdamped regime

$$\partial_{\mathbf{t}}\mu = \nabla \cdot \left(\sigma \nabla \mu + \mu (\nabla \mathbf{V} + \nabla \mathbf{W} * \mu)\right), \quad \mathbf{t} > 0, \, \mathbf{x} \in \Omega$$

- Conditions:
 - We consider $\Omega = \mathbb{R}^n$, with decay, or $\Omega = \mathbb{T}^n$, with periodic boundary conditions
 - We ask $W \in W^{2,\infty}(\Omega)$ and $V \in C^2(\Omega)$. If $\Omega = \mathbb{R}^n$,

$$\lim_{|\mathbf{x}| \to \infty} \frac{1}{4\sigma} |\nabla V(\mathbf{x})|^2 - \frac{1}{2} \Delta V(\mathbf{x}) = \infty$$

From Interacting Particles to the Mean-Field PDE

Agent-based model: each of N agents evolve according to

$$dX_i(t) = -\nabla V(X_i) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla W(X_i - X_j) dt + \sqrt{2\sigma} dB_i(t)$$

• Mean-field limit N $ightarrow \infty$: overdamped regime

$$\partial_{\mathsf{t}} \mu = \nabla \cdot \left(\sigma \nabla \mu + \mu (\nabla \mathsf{V} + \nabla \mathsf{W} * \mu) \right), \quad \mathsf{t} > 0, \, \mathsf{x} \in \Omega$$

- Conditions:
 - We consider $\Omega = \mathbb{R}^n$, with decay, or $\Omega = \mathbb{T}^n$, with periodic boundary conditions
 - We ask $W \in W^{2,\infty}(\Omega)$ and $V \in C^2(\Omega)$. If $\Omega = \mathbb{R}^n$,

$$\lim_{|\mathbf{x}| \to \infty} \frac{1}{4\sigma} |\nabla V(\mathbf{x})|^2 - \frac{1}{2} \Delta V(\mathbf{x}) = \infty$$

$$\nabla \cdot (\sigma \nabla \bar{\mu} + \bar{\mu} (\nabla \mathbf{V} + \nabla \mathbf{W} * \bar{\mu})) = 0 \quad \Longrightarrow \quad \bar{\mu} \propto \exp \left\{ -\frac{1}{\sigma} (\mathbf{V} + \mathbf{W} * \bar{\mu}) \right\}$$

- Gradient flow: the dynamics decrease a free energy functional. Steady states are critical points
 of this energy
- Convex potentials: convexity of V and W implies uniqueness of $\bar{\mu}$ and $\mu(t,\cdot)\stackrel{\mathsf{L}_1}{\to} \bar{\mu}$ exponentially⁴
- Nonconvex potentials: multiple steady states may emerge.

$$\nabla \cdot (\sigma \nabla \bar{\mu} + \bar{\mu} (\nabla \mathbf{V} + \nabla \mathbf{W} * \bar{\mu})) = 0 \quad \Longrightarrow \quad \bar{\mu} \propto \exp \left\{ -\frac{1}{\sigma} (\mathbf{V} + \mathbf{W} * \bar{\mu}) \right\}$$

- Gradient flow: the dynamics decrease a free energy functional. Steady states are critical points
 of this energy
- Convex potentials: convexity of V and W implies uniqueness of $\bar{\mu}$ and $\mu(t,\cdot) \stackrel{L_1}{\to} \bar{\mu}$ exponentially⁴
- Nonconvex potentials: multiple steady states may emerge.

$$\nabla \cdot (\sigma \nabla \bar{\mu} + \bar{\mu} (\nabla \mathbf{V} + \nabla \mathbf{W} * \bar{\mu})) = 0 \quad \Longrightarrow \quad \bar{\mu} \propto \exp \left\{ -\frac{1}{\sigma} (\mathbf{V} + \mathbf{W} * \bar{\mu}) \right\}$$

- Gradient flow: the dynamics decrease a free energy functional. Steady states are critical points
 of this energy
- Convex potentials: convexity of V and W implies uniqueness of $\bar{\mu}$ and $\mu(t,\cdot)\stackrel{\mathsf{L}_1}{\to} \bar{\mu}$ exponentially⁴
- Nonconvex potentials: multiple steady states may emerge.

⁴F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDEs. Stoch. Proc. Appl, 2001.

$$\nabla \cdot (\sigma \nabla \bar{\mu} + \bar{\mu} (\nabla \mathbf{V} + \nabla \mathbf{W} * \bar{\mu})) = 0 \quad \Longrightarrow \quad \bar{\mu} \propto \exp \left\{ -\frac{1}{\sigma} (\mathbf{V} + \mathbf{W} * \bar{\mu}) \right\}$$

- Gradient flow: the dynamics decrease a free energy functional. Steady states are critical points
 of this energy
- Convex potentials: convexity of V and W implies uniqueness of $\bar{\mu}$ and $\mu(t,\cdot) \stackrel{\mathsf{L}_1}{\to} \bar{\mu}$ exponentially⁴
- Nonconvex potentials: multiple steady states may emerge.

⁴F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDEs. Stoch. Proc. Appl, 2001.

Noisy Kuramoto Model

What kind of problem?

- Coupled phase oscillators with sine interaction that synchronize⁵
- Let $\Omega = [0, 2\pi)$, V(x) = 0, $W(x) = -K \cos(x)$
- If K ≤ 1 : $\bar{\mu}(\mathbf{x}) = \frac{1}{2\pi}$ is the unique steady state
- If K > 1: $\bar{\mu} = \frac{1}{2\pi}$ becomes unstable and infinite new steady states appear

⁵L. Bertini, G. Giacomin, K. Pakdaman. Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model, J Stat Phys. 2010.

Formulation of the Controlled Dynamics

• **Objective:** accelerate convergence to $\bar{\mu}$ or stabilise otherwise unstable equilibria

• Control strategy: modify the potential as 6 Control input $V(x)\mapsto V(x) \ + \ \sum_{j=1}^m u_j(t) \ \alpha_j(x),$

for **chosen** spatial controls α_j and **to be optimized** time-dependent controls u_j

Controlled PDE:

$$\partial_{t}\mu = \nabla \cdot \left(\mu \left(\nabla V + \nabla W * \mu + \sum_{j=1}^{m} u_{j} \nabla \alpha_{j} \right) \right) + \sigma \Delta \mu$$

⁶T. Breiten, K. Kunisch, and L. Pfeiffer. Control strategies for the Fokker-Planck equation. ESAIM: COCV, 2018.

Operator-Theoretic Reformulation

• Rewriting the equation: let $y = \mu - \bar{\mu}$, then

$$\dot{y} = \overbrace{(\mathcal{A} + \mathcal{D}_W)y}^{\text{linear part}} \quad + \quad \sum_{j=1}^m \overbrace{u_j(t)\,\mathcal{N}_j y}^{\text{bilinear control}} \quad + \quad \sum_{j=1}^m \overbrace{\mathcal{B}_j\,u_j(t)}^{\text{pure input term}} \quad + \quad \overbrace{\mathcal{W}(y)}^{\text{nonlinear remainder}} \quad \mathcal{B}_j = \mathcal{N}_j \bar{\mu}$$

- $\bullet \ \ \text{Operators: } \mathcal{A}\mu = \nabla \cdot (\sigma \nabla \mu + \mu \nabla \mathsf{V}), \quad \mathcal{N}_j \mu = \nabla \cdot (\mu \nabla \alpha_j), \quad \mathcal{W}(\mu) = \nabla \cdot (\mu \nabla \mathsf{W} * \mu)$
- $\bullet \ \ \textbf{State space:} \ \mathcal{X} = \mathsf{L}^2(\Omega,\bar{\mu}^{-1}) \coloneqq \left\{ \mathsf{f} : \int_{\Omega} |\mathsf{f}(\mathsf{x})|^2 \bar{\mu}^{-1}(\mathsf{x}) \, \mathsf{d} \mathsf{x} < \infty \right\}$
- **Linearization:** the Fréchet derivative \mathcal{D}_W of \mathcal{W} at $\bar{\mu}$ is

$$\mathcal{W}(\bar{\mu} + \mathbf{y}) = \underbrace{\nabla \cdot \left[\overbrace{\bar{\mu}(\nabla \mathbf{W} * \mathbf{y})}^{\text{nonlocal part } \mathcal{D}_{\mathbf{W}, 2}} + \underbrace{\mathbf{y}(\nabla \mathbf{W} * \bar{\mu})}^{\text{local part } \mathcal{D}_{\mathbf{W}, 1}} \right]}_{\mathcal{D}_{\mathbf{W}}\mathbf{y}} + \underbrace{\nabla \cdot \left[\mathbf{y}(\nabla \mathbf{W} * \mathbf{y}) \right]}_{\mathcal{W}(\mathbf{y})}$$

- Goal: Stabilise an equilibrium $\bar{\mu}$ of the McKean-Vlasov equation via feedback control.
- Linearised dynamics around $\bar{\mu}$:

$$\dot{y} = (\mathcal{A} + \mathcal{D}_W)y \, + \sum_{j=1}^m u_j(t) \mathcal{N}_j y \, + \sum_{j=1}^m \mathcal{B}_j \, u_j(t) \, + \, \mathcal{D}(y)$$

where $\mathcal{B}_{\mathbf{j}} = \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}})$. Fix $\delta > 0$. We **have to** choose $\alpha_{\mathbf{j}}$.

- **Key idea:** control the **directions** related to eigenvalues with real part $\geq -\delta$.
- Strategy:

- Goal: Stabilise an equilibrium $\bar{\mu}$ of the McKean-Vlasov equation via feedback control.
- Linearised dynamics around $\bar{\mu}$:

$$\label{eq:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:
$$\dot{y} = (\mathcal{A} + \mathcal{D}_W) y + \sum_{j=1}^m u_j(t) \mathcal{N}_j y + \sum_{j=1}^m \mathcal{B}_j \, u_j(t) + \mathcal{D}_W(y),$$$$

where $\mathcal{B}_{j} = \nabla \cdot (\bar{\mu} \nabla \alpha_{j})$. Fix $\delta > 0$. We have to choose α_{j} .

- **Key idea:** control the **directions** related to eigenvalues with real part $\geq -\delta$.
- Strategy:

- Goal: Stabilise an equilibrium $\bar{\mu}$ of the McKean-Vlasov equation via **feedback control**.
- Linearised dynamics around $\bar{\mu}$:

$$\label{eq:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:
$$\dot{y} = (\mathcal{A} + \mathcal{D}_W) y + \sum_{j=1}^m u_j(t) \mathcal{N}_j y + \sum_{j=1}^m \mathcal{B}_j \, u_j(t) + \mathcal{D}_W y,$$$$

where $\mathcal{B}_{j} = \nabla \cdot (\bar{\mu} \nabla \alpha_{j})$. Fix $\delta > 0$. We have to choose α_{j} .

- **Key idea:** control the **directions** related to eigenvalues with real part $\geq -\delta$.
- Strategy:

- Goal: Stabilise an equilibrium $\bar{\mu}$ of the McKean-Vlasov equation via **feedback control**.
- Linearised dynamics around $\bar{\mu}$:

$$\label{eq:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:equation:
$$\dot{y} = (\mathcal{A} + \mathcal{D}_W) y + \sum_{j=1}^m u_j(t) \mathcal{N}_j y + \sum_{j=1}^m \mathcal{B}_j \, u_j(t) + \mathcal{D}_W(y),$$$$

where $\mathcal{B}_{j} = \nabla \cdot (\bar{\mu} \nabla \alpha_{j})$. Fix $\delta > 0$. We have to choose α_{j} .

- **Key idea:** control the **directions** related to eigenvalues with real part $\geq -\delta$.
- Strategy:

Spectral Reformulation via Unitary Transformation

• Ground-state transform: the unitary map

$$\mathcal{U}: \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) \to \mathsf{L}^2(\Omega), \quad \mathcal{U}\mathbf{y} = \frac{\mathbf{y}}{\sqrt{\bar{\mu}}}$$

• Transformed operator: the linearised operator becomes

$$\mathcal{H} := -\mathcal{U}(\mathcal{A} + \mathcal{D}_{\mathsf{W}})\mathcal{U}^{-1} = \overbrace{-\sigma\Delta + \underbrace{\Psi(\mathsf{x})}_{\Psi = \frac{1}{4\sigma}|\nabla\mathsf{V}|^2 - \frac{1}{2}\Delta\mathsf{V}}}^{\mathsf{Schr\"{o}dinger\ operator}} + \widecheck{\mathcal{K}}$$

- Spectral structure:
 - Rich spectral theory and numerical methods for Schrödinger operators
 - H has compact resolvent and a pure point spectrum
 - $\sigma(\mathcal{H}) = -\sigma(\mathcal{A} + \mathcal{D}_W)$, with isolated eigenvalues **accumulating at infinity**
 - There are **finitely many eigenvalues** with $\Re(\lambda) \ge -\delta \longrightarrow$ we control these modes

Spectral Reformulation via Unitary Transformation

Ground-state transform: the unitary map

$$\mathcal{U}: \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) \to \mathsf{L}^2(\Omega), \quad \mathcal{U}\mathbf{y} = \frac{\mathbf{y}}{\sqrt{\bar{\mu}}}$$

Transformed operator: the linearised operator becomes

$$\mathcal{H} := -\mathcal{U}(\mathcal{A} + \mathcal{D}_{\mathsf{W}})\mathcal{U}^{-1} = \underbrace{-\sigma\Delta + \underbrace{\Psi(\mathsf{x})}_{\Psi = \frac{1}{4\sigma}|\nabla\mathsf{V}|^2 - \frac{1}{2}\Delta\mathsf{V}}}_{\text{Schrödinger operator}} + \underbrace{\mathcal{K}}_{\text{Hilbert-Schmidt operator}}$$

- Spectral structure
 - Rich spectral theory and numerical methods for Schrödinger operators
 - \mathcal{H} has compact resolvent and a pure point spectrum⁷
 - $\sigma(\mathcal{H}) = -\sigma(\mathcal{A} + \mathcal{D}_W)$, with isolated eigenvalues **accumulating at infinity**
 - There are **finitely many eigenvalues** with $\Re(\lambda) \ge -\delta \longrightarrow$ we control these modes

Spectral Reformulation via Unitary Transformation

Ground-state transform: the unitary map

$$\mathcal{U}: \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) \to \mathsf{L}^2(\Omega), \quad \mathcal{U}\mathbf{y} = \frac{\mathbf{y}}{\sqrt{\bar{\mu}}}$$

Transformed operator: the linearised operator becomes

$$\mathcal{H} := -\mathcal{U}(\mathcal{A} + \mathcal{D}_{\mathsf{W}})\mathcal{U}^{-1} = \overbrace{-\sigma\Delta + \underbrace{\Psi(\mathbf{x})}_{\Psi = \frac{1}{4\sigma}|\nabla\mathsf{V}|^2 - \frac{1}{2}\Delta\mathsf{V}}^{\mathsf{Hilbert-Schmidt operator}} + \overbrace{\mathcal{K}}^{\mathsf{Hilbert-Schmidt operator}}$$

- Spectral structure:
 - Rich spectral theory and numerical methods for Schrödinger operators
 - \mathcal{H} has compact resolvent and a pure point spectrum⁷
 - $\sigma(\mathcal{H}) = -\sigma(\mathcal{A} + \mathcal{D}_W)$, with isolated eigenvalues accumulating at infinity
 - There are **finitely many eigenvalues** with $\Re(\lambda) \ge -\delta \longrightarrow$ we control these modes

⁷M. Reed and B. Simon. Analysis of Operators; Methods of Modern Mathematical Physics IV. 1978.

Mass Conservation and Zero-Mean Projection

• **Observation:** the operator $A + D_W$ preserves mass:

$$\begin{split} \int_{\Omega} (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}(\mathsf{x}) \, \mathsf{d} \mathsf{x} &= \int_{\Omega} \nabla \cdot (\sigma \nabla \mathsf{y}(\mathsf{x}) + \mathsf{y}(\mathsf{x}) \nabla (\mathsf{V} + \mathsf{W} * \bar{\mu})(\mathsf{x}) + \bar{\mu}(\mathsf{x}) (\nabla \mathsf{W} * \mathsf{y})(\mathsf{x})) \, \mathsf{d} \mathsf{x} = 0, \\ \mathsf{so} \, 0 &= \langle (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}, \bar{\mu} \rangle_{\mathsf{L}^{2}(\Omega, \bar{\mu}^{-1})} \, \mathsf{for} \, \mathsf{all} \, \mathsf{y} \in \mathsf{L}^{2}(\Omega, \bar{\mu}^{-1}) \end{split}$$

- Consequence: $(A + D_W)^* \bar{\mu} = 0 \implies 0$ is an eigenvalue of $A + D_W$ we don't need to control
- **Fix:** we work in the subspace of zero-mean perturbations:

$$\mathcal{X}_0 := \left\{ \mathbf{y} \in \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) : \int_{\Omega} \mathbf{y}(\mathbf{x}) \, \mathsf{d}\mathbf{x} = 0 \right\}$$

• **Notation:** for presentation purposes, we keep writing A and D_W but implicitly restrict them to \mathcal{X}_0

Mass Conservation and Zero-Mean Projection

• **Observation:** the operator $A + D_W$ preserves mass:

$$\begin{split} \int_{\Omega} (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}(\mathsf{x}) \, \mathsf{d} \mathsf{x} &= \int_{\Omega} \nabla \cdot (\sigma \nabla \mathsf{y}(\mathsf{x}) + \mathsf{y}(\mathsf{x}) \nabla (\mathsf{V} + \mathsf{W} * \bar{\mu})(\mathsf{x}) + \bar{\mu}(\mathsf{x}) (\nabla \mathsf{W} * \mathsf{y})(\mathsf{x})) \, \mathsf{d} \mathsf{x} = 0, \\ \mathsf{so} \, 0 &= \langle (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}, \bar{\mu} \rangle_{\mathsf{L}^{2}(\Omega, \bar{\mu}^{-1})} \, \mathsf{for} \, \mathsf{all} \, \mathsf{y} \in \mathsf{L}^{2}(\Omega, \bar{\mu}^{-1}) \end{split}$$

- Consequence: $(A + D_W)^* \bar{\mu} = 0 \implies 0$ is an eigenvalue of $A + D_W$ we don't need to control
- **Fix:** we work in the subspace of zero-mean perturbations:

$$\mathcal{X}_0 := \left\{ \mathbf{y} \in \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) : \int_{\Omega} \mathbf{y}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = 0 \right\}$$

• **Notation:** for presentation purposes, we keep writing A and D_W but implicitly restrict them to \mathcal{X}_0

Mass Conservation and Zero-Mean Projection

• **Observation:** the operator $A + D_W$ preserves mass:

$$\begin{split} &\int_{\Omega} (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}(\mathsf{x}) \, \mathsf{d} \mathsf{x} = \int_{\Omega} \nabla \cdot (\sigma \nabla \mathsf{y}(\mathsf{x}) + \mathsf{y}(\mathsf{x}) \nabla (\mathsf{V} + \mathsf{W} * \bar{\mu})(\mathsf{x}) + \bar{\mu}(\mathsf{x}) (\nabla \mathsf{W} * \mathsf{y})(\mathsf{x})) \, \mathsf{d} \mathsf{x} = 0, \\ &\mathsf{so} \, 0 = \langle (\mathcal{A} + \mathcal{D}_{\mathsf{W}}) \mathsf{y}, \bar{\mu} \rangle_{\mathsf{L}^{2}(\Omega, \bar{\mu}^{-1})} \, \mathsf{for} \, \mathsf{all} \, \mathsf{y} \in \mathsf{L}^{2}(\Omega, \bar{\mu}^{-1}) \end{split}$$

- Consequence: $(A + D_W)^* \bar{\mu} = 0 \implies 0$ is an eigenvalue of $A + D_W$ we don't need to control
- **Fix:** we work in the subspace of zero-mean perturbations:

$$\mathcal{X}_0 := \left\{ \mathbf{y} \in \mathsf{L}^2(\Omega, \bar{\mu}^{-1}) : \int_{\Omega} \mathbf{y}(\mathbf{x}) \, \mathsf{d}\mathbf{x} = 0 \right\}$$

• **Notation:** for presentation purposes, we keep writing $\mathcal A$ and $\mathcal D_W$ but implicitly restrict them to $\mathcal X_0$

Optimal Control and Stabilisation of the Linearised Problem

Consider the problem

$$\begin{split} \min_{\textbf{u}(\cdot)} \ \frac{1}{2} \int_0^\infty e^{2\delta t} \left(\left\langle \textbf{y}(\textbf{t}), \, \mathcal{M} \, \textbf{y}(\textbf{t}) \right\rangle + \|\textbf{u}(\textbf{t})\|^2 \right) \, \text{dt}, \quad \mathcal{M} \text{ positive definite} \\ \text{subject to} \quad \dot{\textbf{y}}(\textbf{t}) = \underbrace{(\mathcal{A} + \mathcal{D}_{\textbf{W}})}_{=:\mathcal{L}} \ \textbf{y}(\textbf{t}) + \underbrace{\left[\mathcal{B}_1, \dots, \mathcal{B}_m\right]}_{=:\mathcal{B}} \ \textbf{u}(\textbf{t}), \end{split}$$

• **Riccati equation:** find a self-adjoint operator Π solving

$$(\mathcal{L}^* + \delta I)\Pi + \Pi(\mathcal{L} + \delta I) - \Pi \mathcal{B} \mathcal{B}^* \Pi + \mathcal{M} = 0$$

• Feedback law: $u(t) = -\mathcal{B}^*\Pi y(t)$ stabilises the system, i.e., $\|y\|_{L^2(\Omega,\bar{\mu}^{-1})} \leq Ce^{-\delta t}$. We need to verify the infinite-dimensional Hautus condition⁸

Optimal Control and Stabilisation of the Linearised Problem

Consider the problem

$$\begin{split} \min_{\textbf{u}(\cdot)} \ \frac{1}{2} \int_0^\infty e^{2\delta t} \left(\left\langle \textbf{y}(\textbf{t}), \, \mathcal{M} \, \textbf{y}(\textbf{t}) \right\rangle + \|\textbf{u}(\textbf{t})\|^2 \right) \, \text{dt}, \quad \mathcal{M} \text{ positive definite} \\ \text{subject to} \quad \dot{\textbf{y}}(\textbf{t}) = \underbrace{(\mathcal{A} + \mathcal{D}_{\textbf{W}})}_{=:\mathcal{L}} \ \textbf{y}(\textbf{t}) + \underbrace{\left[\mathcal{B}_1, \dots, \mathcal{B}_m\right]}_{=:\mathcal{B}} \ \textbf{u}(\textbf{t}), \end{split}$$

• Riccati equation: find a self-adjoint operator Π solving

$$(\mathcal{L}^* + \delta \mathbf{I})\Pi + \Pi(\mathcal{L} + \delta \mathbf{I}) - \Pi \mathcal{B} \mathcal{B}^*\Pi + \mathcal{M} = 0$$

• Feedback law: $u(t) = -\mathcal{B}^*\Pi y(t)$ stabilises the system, i.e., $\|y\|_{L^2(\Omega,\bar{\mu}^{-1})} \leq Ce^{-\delta t}$. We need to verify the infinite-dimensional Hautus condition⁸

Optimal Control and Stabilisation of the Linearised Problem

Consider the problem

$$\begin{split} \min_{\textbf{u}(\cdot)} \ \frac{1}{2} \int_0^\infty e^{2\delta t} \left(\left\langle \textbf{y}(\textbf{t}), \, \mathcal{M} \, \textbf{y}(\textbf{t}) \right\rangle + \|\textbf{u}(\textbf{t})\|^2 \right) \, \text{dt}, \quad \mathcal{M} \text{ positive definite} \\ \text{subject to} \quad \dot{\textbf{y}}(\textbf{t}) = \underbrace{(\mathcal{A} + \mathcal{D}_{\textbf{W}})}_{=:\mathcal{L}} \ \textbf{y}(\textbf{t}) + \underbrace{\left[\mathcal{B}_1, \dots, \mathcal{B}_m\right]}_{=:\mathcal{B}} \ \textbf{u}(\textbf{t}), \end{split}$$

• Riccati equation: find a self-adjoint operator Π solving

$$(\mathcal{L}^* + \delta \mathbf{I})\Pi + \Pi(\mathcal{L} + \delta \mathbf{I}) - \Pi \mathcal{B} \mathcal{B}^*\Pi + \mathcal{M} = 0$$

• Feedback law: $u(t) = -\mathcal{B}^*\Pi y(t)$ stabilises the system, i.e., $\|y\|_{L^2(\Omega,\bar{\mu}^{-1})} \leq Ce^{-\delta t}$. We need to verify the infinite-dimensional Hautus condition⁸

⁸R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 2005.

• Eigen-expansion:

$$\mathbf{y}(\mathbf{t},\mathbf{x}) = \sum_{n \geq 1} \mathbf{c}_{\mathbf{n}}(\mathbf{t}) \, \varphi_{\mathbf{n}}(\mathbf{x}), \quad (\mathcal{A} + \mathcal{D}_{\mathbf{W}}) \varphi_{\mathbf{n}} = \lambda_{\mathbf{n}} \varphi_{\mathbf{n}}, \quad \langle \varphi_{\mathbf{n}}^*, \varphi_{\mathbf{m}} \rangle = \delta_{\mathbf{n}\mathbf{m}}$$

Mode dynamics:

$$\dot{c}_n = \lambda_n c_n + \sum_{j=1}^m u_j(t) \langle \mathcal{B}_j, \varphi_n^* \rangle$$

Design inputs to target unstable modes: Solve

$$\mathcal{B}_{\mathbf{j}} \coloneqq \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}}) = \varphi_{\mathbf{j}}, \quad \mathbf{j} = 1, \dots, \mathsf{m}$$

• **Decoupled slow block:** For the m modes with $\Re(\lambda_j) \geq -\delta$, we get

$$\dot{\mathsf{c}}_{\mathsf{j}} = \lambda_{\mathsf{j}} \mathsf{c}_{\mathsf{j}} + \mathsf{u}_{\mathsf{j}}, \quad \mathsf{j} = 1, \dots, \mathsf{m}$$

• Eigen-expansion:

$$\mathbf{y}(\mathbf{t},\mathbf{x}) = \sum_{\mathbf{n} \geq 1} \mathbf{c}_{\mathbf{n}}(\mathbf{t}) \, \varphi_{\mathbf{n}}(\mathbf{x}), \quad (\mathcal{A} + \mathcal{D}_{\mathbf{W}}) \varphi_{\mathbf{n}} = \lambda_{\mathbf{n}} \varphi_{\mathbf{n}}, \quad \langle \varphi_{\mathbf{n}}^*, \varphi_{\mathbf{m}} \rangle = \delta_{\mathbf{n}\mathbf{m}}$$

Mode dynamics:

$$\dot{\mathbf{c}}_{\mathsf{n}} = \lambda_{\mathsf{n}}\mathbf{c}_{\mathsf{n}} + \sum_{\mathsf{j}=1}^{\mathsf{m}} \frac{\mathsf{u}_{\mathsf{j}}(\mathsf{t}) \langle \mathcal{B}_{\mathsf{j}}, \varphi_{\mathsf{n}}^* \rangle}{}$$

Design inputs to target unstable modes: Solve

$$\mathcal{B}_{\mathbf{j}} \coloneqq \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}}) = \varphi_{\mathbf{j}}, \quad \mathbf{j} = 1, \dots, \mathsf{m}$$

• **Decoupled slow block:** For the m modes with $\Re(\lambda_i) \geq -\delta$, we get

$$\dot{\mathsf{c}}_{\mathsf{j}} = \lambda_{\mathsf{j}} \mathsf{c}_{\mathsf{j}} + \mathsf{u}_{\mathsf{j}}, \quad \mathsf{j} = 1, \dots, \mathsf{m}$$

• Eigen-expansion:

$$\mathbf{y}(\mathbf{t},\mathbf{x}) = \sum_{\mathsf{n} > 1} \mathbf{c}_\mathsf{n}(\mathbf{t}) \, \varphi_\mathsf{n}(\mathbf{x}), \quad (\mathcal{A} + \mathcal{D}_\mathsf{W}) \varphi_\mathsf{n} = \lambda_\mathsf{n} \varphi_\mathsf{n}, \quad \langle \varphi_\mathsf{n}^*, \varphi_\mathsf{m} \rangle = \delta_\mathsf{nm}$$

Mode dynamics:

$$\dot{\mathbf{c}}_{\mathsf{n}} = \lambda_{\mathsf{n}}\mathbf{c}_{\mathsf{n}} + \sum_{\mathsf{j}=1}^{\mathsf{m}} \mathsf{u}_{\mathsf{j}}(\mathsf{t}) \langle \mathcal{B}_{\mathsf{j}}, \varphi_{\mathsf{n}}^* \rangle$$

Design inputs to target unstable modes: Solve

$$\mathcal{B}_{\mathbf{j}} \coloneqq \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}}) = \varphi_{\mathbf{j}}, \quad \mathbf{j} = 1, \dots, \mathbf{m}$$

• **Decoupled slow block:** For the m modes with $\Re(\lambda_i) \geq -\delta$, we get

$$\dot{\mathsf{c}}_{\mathsf{j}} = \lambda_{\mathsf{j}} \mathsf{c}_{\mathsf{j}} + \mathsf{u}_{\mathsf{j}}, \quad \mathsf{j} = 1, \dots, \mathsf{m}$$

• Eigen-expansion:

$$\mathbf{y}(\mathbf{t},\mathbf{x}) = \sum_{\mathsf{n} > 1} \mathbf{c}_\mathsf{n}(\mathbf{t}) \, \varphi_\mathsf{n}(\mathbf{x}), \quad (\mathcal{A} + \mathcal{D}_\mathsf{W}) \varphi_\mathsf{n} = \lambda_\mathsf{n} \varphi_\mathsf{n}, \quad \langle \varphi_\mathsf{n}^*, \varphi_\mathsf{m} \rangle = \delta_\mathsf{nm}$$

Mode dynamics:

$$\dot{\mathbf{c}}_{\mathsf{n}} = \lambda_{\mathsf{n}}\mathbf{c}_{\mathsf{n}} + \sum_{\mathsf{j}=1}^{\mathsf{m}} \mathsf{u}_{\mathsf{j}}(\mathsf{t}) \langle \mathcal{B}_{\mathsf{j}}, \varphi_{\mathsf{n}}^* \rangle$$

Design inputs to target unstable modes: Solve

$$\mathcal{B}_{\mathbf{j}} \coloneqq \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}}) = \varphi_{\mathbf{j}}, \quad \mathbf{j} = 1, \dots, \mathbf{m}$$

• Decoupled slow block: For the m modes with $\Re(\lambda_j) \geq -\delta$, we get

$$\dot{\textbf{c}}_{j} = \lambda_{j}\textbf{c}_{j} + \textbf{u}_{j}, \quad j = 1, \dots, \textbf{m}$$

• Eigen-expansion:

$$\mathbf{y}(\mathbf{t},\mathbf{x}) = \sum_{\mathsf{n} > 1} \mathbf{c}_\mathsf{n}(\mathbf{t}) \, \varphi_\mathsf{n}(\mathbf{x}), \quad (\mathcal{A} + \mathcal{D}_\mathsf{W}) \varphi_\mathsf{n} = \lambda_\mathsf{n} \varphi_\mathsf{n}, \quad \langle \varphi_\mathsf{n}^*, \varphi_\mathsf{m} \rangle = \delta_\mathsf{nm}$$

Mode dynamics:

$$\dot{\mathbf{c}}_{\mathsf{n}} = \lambda_{\mathsf{n}}\mathbf{c}_{\mathsf{n}} + \sum_{\mathsf{j}=1}^{\mathsf{m}} \mathsf{u}_{\mathsf{j}}(\mathsf{t}) \langle \mathcal{B}_{\mathsf{j}}, \varphi_{\mathsf{n}}^* \rangle$$

• Design inputs to target unstable modes: Solve

$$\mathcal{B}_{\mathbf{j}} \coloneqq \nabla \cdot (\bar{\mu} \nabla \alpha_{\mathbf{j}}) = \varphi_{\mathbf{j}}, \quad \mathbf{j} = 1, \dots, \mathbf{m}$$

• **Decoupled slow block:** For the m modes with $\Re(\lambda_j) \ge -\delta$, we get

$$\dot{c}_j = \lambda_j c_j + \textcolor{red}{u_j}, \quad j = 1, \ldots, m$$

 $\mathcal{B}_{\mathbf{j}} = \varphi_{\mathbf{j}} \implies \text{ infinite-dimensional Hautus condition } \implies \delta\text{-stability of the linearised system}$

The equation for $\psi = \mathsf{e}^{\delta\mathsf{t}}\mathcal{U}\mathsf{y}$ is

$$\dot{\psi} = -\mathcal{H}_{\Pi}\psi - (\hat{\mathcal{B}}^*\hat{\Pi}\psi)\hat{\mathcal{N}}^{\delta}(\mathbf{t})\psi + \hat{\mathcal{W}}^{\delta}(\psi), \quad \psi(0,\cdot) = \mathcal{U}(\mu_0 - \bar{\mu})$$

where $\mathcal{H}_{\Pi} = \mathcal{H} - \delta \mathbf{I} + \hat{\mathcal{B}}\hat{\mathcal{B}}^*\hat{\Pi}$.

- Linear decay: \mathcal{H}_{Π} generates exponential decay with rate δ
- Nonlinear remainder: the term $\hat{\mathcal{W}}^{\delta}(\psi)$ allows a Lipschitz-type estimate
- Contraction argument: for $\|\psi_0\|$ sufficiently small, the full closed-loop system is a contraction in a suitable function space⁹. Therefore,

$$\|\psi(\mathsf{t})\|_{\mathsf{L}^2(\Omega)} \leq \mathsf{C} \, \|\psi_0\|_{\mathsf{L}^2(\Omega)} \implies \|\mathsf{y}(\mathsf{t})\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})} \leq \mathsf{Ce}^{-\delta\mathsf{t}} \|\mu_0 - \bar{\mu}\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})}.$$

The equation for $\psi = \mathsf{e}^{\delta\mathsf{t}}\mathcal{U}\mathsf{y}$ is

$$\dot{\psi} = -\mathcal{H}_{\Pi}\psi - (\hat{\mathcal{B}}^*\hat{\Pi}\psi)\hat{\mathcal{N}}^{\delta}(\mathbf{t})\psi + \hat{\mathcal{W}}^{\delta}(\psi), \quad \psi(0,\cdot) = \mathcal{U}(\mu_0 - \bar{\mu})$$

where $\mathcal{H}_{\Pi} = \mathcal{H} - \delta \mathbf{I} + \hat{\mathcal{B}}\hat{\mathcal{B}}^*\hat{\Pi}$.

- Linear decay: \mathcal{H}_{Π} generates exponential decay with rate δ
- Nonlinear remainder: the term $\hat{\mathcal{W}}^{\delta}(\psi)$ allows a Lipschitz-type estimate
- Contraction argument: for $\|\psi_0\|$ sufficiently small, the full closed-loop system is a contraction in a suitable function space⁹. Therefore,

$$\|\psi(\mathsf{t})\|_{\mathsf{L}^2(\Omega)} \leq \mathsf{C} \, \|\psi_0\|_{\mathsf{L}^2(\Omega)} \implies \|\mathsf{y}(\mathsf{t})\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})} \leq \mathsf{Ce}^{-\delta\mathsf{t}} \|\mu_0 - \bar{\mu}\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})}.$$

The equation for $\psi = \mathrm{e}^{\delta\mathsf{t}}\mathcal{U}\mathsf{y}$ is

$$\dot{\psi} = -\mathcal{H}_{\Pi}\psi - (\hat{\mathcal{B}}^*\hat{\Pi}\psi)\hat{\mathcal{N}}^{\delta}(\mathbf{t})\psi + \hat{\mathcal{W}}^{\delta}(\psi), \quad \psi(0,\cdot) = \mathcal{U}(\mu_0 - \bar{\mu})$$

where $\mathcal{H}_{\Pi} = \mathcal{H} - \delta \mathbf{I} + \hat{\mathcal{B}}\hat{\mathcal{B}}^*\hat{\Pi}$.

- Linear decay: \mathcal{H}_{Π} generates exponential decay with rate δ
- Nonlinear remainder: the term $\hat{\mathcal{W}}^{\delta}(\psi)$ allows a Lipschitz-type estimate
- Contraction argument: for $\|\psi_0\|$ sufficiently small, the full closed-loop system is a contraction in a suitable function space⁹. Therefore,

$$\|\psi(\mathsf{t})\|_{\mathsf{L}^2(\Omega)} \leq \mathsf{C} \, \|\psi_0\|_{\mathsf{L}^2(\Omega)} \implies \|\mathsf{y}(\mathsf{t})\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})} \leq \mathsf{Ce}^{-\delta\mathsf{t}} \|\mu_0 - \bar{\mu}\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})}.$$

The equation for $\psi = \mathrm{e}^{\delta\mathsf{t}}\mathcal{U}\mathsf{y}$ is

$$\dot{\psi} = -\mathcal{H}_{\Pi}\psi - (\hat{\mathcal{B}}^*\hat{\Pi}\psi)\hat{\mathcal{N}}^{\delta}(\mathbf{t})\psi + \hat{\mathcal{W}}^{\delta}(\psi), \quad \psi(0,\cdot) = \mathcal{U}(\mu_0 - \bar{\mu})$$

where $\mathcal{H}_{\Pi} = \mathcal{H} - \delta \mathbf{I} + \hat{\mathcal{B}} \hat{\mathcal{B}}^* \hat{\Pi}$.

- Linear decay: \mathcal{H}_{Π} generates exponential decay with rate δ
- Nonlinear remainder: the term $\hat{\mathcal{W}}^{\delta}(\psi)$ allows a Lipschitz-type estimate
- Contraction argument: for $\|\psi_0\|$ sufficiently small, the full closed-loop system is a contraction in a suitable function space⁹. Therefore,

$$\|\psi(\mathsf{t})\|_{\mathsf{L}^2(\Omega)} \leq \mathsf{C} \, \|\psi_0\|_{\mathsf{L}^2(\Omega)} \implies \|\mathsf{y}(\mathsf{t})\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})} \leq \mathsf{Ce}^{-\delta\mathsf{t}} \|\mu_0 - \bar{\mu}\|_{\mathsf{L}^2(\Omega,\bar{\mu}^{-1})}.$$

⁹D. Kalise, L. M, G. Pavliotis. Linearization-Based Feedback Stabilization of McKean-Vlasov PDEs, arXiv. 2025.

Numerical implementation

Work on the periodic domain $\Omega = \mathbb{T}^d$

• Fourier expansion: for $k \in \mathbb{Z}^d$,

$$\mathbf{y}(\mathbf{x},\mathbf{t}) pprox rac{1}{\sqrt{2\pi}} \sum_{|\mathbf{k}| \leq L} \hat{\mathbf{y}}_{\mathbf{k}}(\mathbf{t}) \mathbf{e}^{i\mathbf{k}\cdot\mathbf{x}}$$

• Galerkin projection: project the full equation onto the span of $\left\{\frac{1}{\sqrt{2\pi}}e^{ik\cdot x}\right\}_{|k|\leq L}$. The matrix representation is

$$\dot{\hat{y}} = A\hat{y} + \sum_{j=1}^m \mathsf{B}_j \mathsf{u}_j, \qquad \mathsf{J} = \int_0^\infty \mathsf{e}^{2\delta \mathsf{t}} (\hat{y}^\top \mathsf{M} \hat{y} + \|\mathsf{u}\|^2) \, \mathsf{d} \mathsf{t}$$

• Feedback computation: solve the discrete Riccati equation

$$(\mathbf{A}^\top + \delta \mathbf{I})\Pi_{\mathsf{L}} + \Pi_{\mathsf{L}}(\mathbf{A} + \delta \mathbf{I}) - \Pi_{\mathsf{L}}\mathbf{B}\mathbf{B}^\top\Pi_{\mathsf{L}} + \mathbf{M} = 0, \quad \mathbf{u} = -\mathbf{B}^\top\Pi_{\mathsf{L}}\hat{\mathbf{y}}$$

Noisy Kuramoto under feedback control

Figure: Set V(x) = 0, $W(x) = -K \cos(x)$ and $\sigma = 0.5$.

Kuramoto model + Potential V

Figure: Set $V(x) = 0.05 \cos(x)$ and $W(x) = -\cos(x)$

Outlook

Conclusions

- Deterministic feedback accelerates convergence to steady states.
- Riccati-based law yields local, rate-guaranteed stabilization.

Future Work

- Develop a global Lyapunov feedback law for full nonlinear PDE.
- Analyze robustness under model uncertainties in V and W.
- Numerics to higher-dimensional domains.
- Extend to kinetic equations: hypoelliptic analysis

IMPERIAL

Thank you for the attention! Questions, suggestions?

Feedback stabilisation for the McKean-Vlasov equation July 17th, 2025

Operator-Theoretic Reformulation

Weighted spaces and linearisation

Why work in weighted spaces?

This is the natural energy space for the linearised and localised operator

$$(\mathcal{A} + \mathcal{D}_{\mathsf{W},1})\mathsf{y} \coloneqq \nabla \cdot (\sigma \nabla \mathsf{y} + \mathsf{y} \nabla \mathsf{V}) + \nabla \cdot (\mathsf{y} \nabla \mathsf{W} * \bar{\mu})$$

- It ensures that the operator $A + D_{W,1}$ is self-adjoint.
- Inner product structure simplifies spectral and stability analysis.
- ullet By a unitary transformation, we convert $\mathcal{A}+\mathcal{D}_{W}$ into a Schrödinger operator plus a compact operator.

Two linearisation strategies:

One can adopt the full linearisation \mathcal{D}_W , which captures all nonlocal effects, or the simplified local form $\mathcal{D}_{W,1}$, which is easier to handle computationally. Both yield implementable schemes.

$$\overbrace{\sigma \Delta \mathbf{y} + \nabla \cdot (\mathbf{y} \nabla (\mathbf{V} + \mathbf{W} * \bar{\mu}))}^{\text{Linear Fokker-Planck operator}} \ + \ \nabla \cdot (\bar{\mu} \nabla \mathbf{W} * \mathbf{y})$$