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Ceilidh Dance
From local rules to global behaviour

l A traditional Scottish dance with a
caller who steers the choreography
(pattern).

l Local interactions lead to global co-
ordination

l Wemodel the agents with stochas-
tic differential equations (SDEs)

l In the limit of many agents, the
probability density follows a PDE:
theMcKean-Vlasov equation

Photo © Dave Conner (CC BY 4.0) – clip-art adaptation by L. Moschen.
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TheMcKean-Vlasov Equation12

∂tµ = σ∆µ︸︷︷︸
Diffusion

+ ∇ · (µ∇V)︸ ︷︷ ︸
External drift

+ ∇ · (µ∇W ∗ µ)︸ ︷︷ ︸
Interaction drift

l µ(t, x): evolution of the density of agents

l W(x): introduces nonlinearity and nonlocality through (∇W ∗ y)(x) :=
∫
Ω
∇W(x− x′) y(x′)dx′

l Fokker–Planck PDE for the McKean–Vlasov SDE where the drift depends on the law µ

1A.-S. Sznitman, Topics in propagation of chaos, Lecture Notes in Mathematics, vol. 1464, Springer, 1991.
2J.A. Carrillo, R.J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations, Rev. Mat.

Iberoamericana, 2003.
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Why Control Interacting Systems?
Motivations for feedback design

l Uncontrolled systems:
l Possible slow convergence to the long-term (small spectral gap)
l Converge to an undesirable equilibrium

l Our goals:
l Accelerate convergence to a desired steady state
l Steer the system toward or away from specific modes

l Solution approach:
l Introduce time-dependent feedback potentials into the PDE dynamics
l Based on Breiten, Kunisch, and Pfeiffer’s work3
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3T. Breiten, K. Kunisch, and L. Pfeiffer. Control strategies for the Fokker-Planck equation. ESAIM: COCV, 2018.
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Overview of Our Approach

Linearisation

Spectral Analysis

Linear Stabilisation

Nonlinear Estimates

Numerical Results
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From Interacting Particles to the Mean-Field PDE

l Agent-basedmodel: each of N agents evolve according to

dXi(t) = −∇V(Xi)dt−
1

N

N∑
j=1

∇W(Xi − Xj)dt+
√
2σ dBi(t)

l Mean-field limitN → ∞: overdamped regime

∂tµ = ∇ · (σ∇µ+ µ(∇V+∇W ∗ µ)) , t > 0, x ∈ Ω

l Conditions:
l We considerΩ = Rn, with decay, orΩ = Tn, with periodic boundary conditions
l We ask W ∈ W2,∞(Ω) and V ∈ C2(Ω). IfΩ = Rn,

lim
|x|→∞

1

4σ
|∇V(x)|2 − 1

2
∆V(x) = ∞
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Long-Time Behaviour of the McKean-Vlasov Equation

l Steady states: time-independent solutions µ̄ satisfying

∇ · (σ∇µ̄+ µ̄(∇V+∇W ∗ µ̄)) = 0 =⇒ µ̄ ∝ exp
{
− 1

σ
(V+W ∗ µ̄)

}
l Gradient flow: the dynamics decrease a free energy functional. Steady states are critical points
of this energy

l Convex potentials: convexity of V and W implies uniqueness of µ̄ and µ(t, ·) L1→ µ̄ exponentially4

l Nonconvex potentials: multiple steady states may emerge.
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4F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDEs. Stoch. Proc. Appl, 2001.
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Noisy KuramotoModel
What kind of problem?

l Coupled phase oscillators
with sine interaction that
synchronize5

l Let Ω = [0, 2π), V(x) = 0,
W(x) = −K cos(x)

l If K ≤ 1: µ̄(x) = 1
2π is the

unique steady state

l If K > 1: µ̄ = 1
2π be-

comes unstable and infinite
new steady states appear 0 2 4 6

x
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Uncontrolled Evolution
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x

0.0

0.1

0.2

0.3

Controlled Evolution

Initial Distribution

Final Distribution

5L. Bertini, G. Giacomin, K. Pakdaman. Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model, J Stat
Phys. 2010.
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Formulation of the Controlled Dynamics

l Objective: accelerate convergence to µ̄ or stabilise otherwise unstable equilibria

l Control strategy: modify the potential as6

V(x) 7→ V(x) +

Control input︷ ︸︸ ︷
m∑
j=1

uj(t)αj(x),

for chosen spatial controls αj and to be optimized time-dependent controls uj

l Controlled PDE:

∂tµ = ∇ ·

(
µ

(
∇V+∇W ∗ µ+

m∑
j=1

uj∇αj

))
+ σ∆µ

6T. Breiten, K. Kunisch, and L. Pfeiffer. Control strategies for the Fokker-Planck equation. ESAIM: COCV, 2018.
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Operator-Theoretic Reformulation

l Rewriting the equation: let y = µ− µ̄, then

ẏ =

linear part︷ ︸︸ ︷
(A+DW)y +

m∑
j=1

bilinear control︷ ︸︸ ︷
uj(t)Njy +

m∑
j=1

pure input term︷ ︸︸ ︷
Bj uj(t) +

nonlinear remainder︷ ︸︸ ︷
W(y), Bj = Njµ̄

l Operators: Aµ = ∇ · (σ∇µ+ µ∇V), Njµ = ∇ · (µ∇αj), W(µ) = ∇ · (µ∇W ∗ µ)

l State space: X = L2(Ω, µ̄−1) :=

{
f :
∫

Ω
|f(x)|2µ̄−1(x)dx <∞

}
l Linearization: the Fréchet derivativeDW ofW at µ̄ is

W(µ̄+ y) = ∇ ·

nonlocal partDW,2︷ ︸︸ ︷
µ̄(∇W ∗ y) +

local partDW,1︷ ︸︸ ︷
y(∇W ∗ µ̄)


︸ ︷︷ ︸

DWy

+∇ · [y(∇W ∗ y)]︸ ︷︷ ︸
W(y)

Imperial College London Feedback stabilisation for the McKean-Vlasov equation 10 / 21 July 17th, 2025



How dowe plan to control?

l Goal: Stabilise an equilibrium µ̄ of the McKean–Vlasov equation via feedback control.

l Linearised dynamics around µ̄:

ẏ = (A+DW)y +
∑m

j=1 uj(t)Njy +
m∑
j=1

Bj uj(t) + W(y),

where Bj = ∇ · (µ̄∇αj). Fix δ > 0. We have to choose αj.

l Key idea: control the directions related to eigenvalues with real part≥ −δ.

l Strategy:

Spectral analysis
ofA+DW

Identify unstable
modes (ℜλ ≥ −δ)

Project and build a
finite-dim feedback

Closed-loop stability
Contraction argument
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Spectral Reformulation via Unitary Transformation

l Ground-state transform: the unitary map

U : L2(Ω, µ̄−1) → L2(Ω), Uy =
y√
µ̄

l Transformed operator: the linearised operator becomes

H := −U(A+DW)U−1 =

Schrödinger operator︷ ︸︸ ︷
−σ∆+ Ψ(x)︸︷︷︸

Ψ=
1
4σ |∇V|2− 1

2∆V

+

Hilbert–Schmidt operator︷︸︸︷
K

l Spectral structure:
l Rich spectral theory and numerical methods for Schrödinger operators
l H has compact resolvent and a pure point spectrum7

l σ(H) = −σ(A+DW), with isolated eigenvalues accumulating at infinity
l There are finitely many eigenvalueswithℜ(λ) ≥ −δ −→we control these modes
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7M. Reed and B. Simon. Analysis of Operators; Methods of Modern Mathematical Physics IV. 1978.

Imperial College London Feedback stabilisation for the McKean-Vlasov equation 12 / 21 July 17th, 2025



Mass Conservation and Zero-Mean Projection

l Observation: the operatorA+DW preserves mass:∫
Ω

(A+DW)y(x)dx =
∫
Ω

∇ · (σ∇y(x) + y(x)∇(V+W ∗ µ̄)(x) + µ̄(x)(∇W ∗ y)(x))dx = 0,

so 0 = 〈(A+DW)y, µ̄〉L2(Ω,µ̄−1) for all y ∈ L2(Ω, µ̄−1)

l Consequence: (A+DW)
∗µ̄ = 0 =⇒ 0 is an eigenvalue ofA+DW we don’t need to control

l Fix: we work in the subspace of zero-mean perturbations:

X0 :=

{
y ∈ L2(Ω, µ̄−1) :

∫
Ω

y(x)dx = 0

}
l Notation: for presentation purposes, we keep writingA andDW but implicitly restrict them toX0
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Optimal Control and Stabilisation of the Linearised Problem

Consider the problem

min
u(·)

1

2

∫ ∞

0

e2δt
(〈

y(t), M y(t)
〉
+ ‖u(t)‖2

)
dt, M positive definite

subject to ẏ(t) = (A+DW)︸ ︷︷ ︸
=:L

y(t) +
[
B1, . . . ,Bm

]︸ ︷︷ ︸
=:B

u(t),

l Riccati equation: find a self-adjoint operatorΠ solving

(L∗ + δI)Π + Π(L+ δI)−ΠBB∗Π+M = 0

l Feedback law: u(t) = −B∗Πy(t) stabilises the system, i.e., ‖y‖L2(Ω,µ̄−1) ≤ Ce−δt. We need to
verify the infinite-dimensional Hautus condition8
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8R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 2005.
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How to choose Bj appropriately?

l Eigen-expansion:

y(t, x) =
∑
n≥1

cn(t)φn(x), (A+DW)φn = λnφn, 〈φ∗
n, φm〉 = δnm

l Mode dynamics: ċn = λncn +
m∑
j=1

uj(t)〈Bj, φ
∗
n〉

l Design inputs to target unstablemodes: Solve

Bj := ∇ · (µ̄∇αj) = φj, j = 1, . . . ,m

l Decoupled slow block: For the mmodes with<(λj) ≥ −δ, we get

ċj = λjcj + uj, j = 1, . . . ,m
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j=1

uj(t)〈Bj, φ
∗
n〉

l Design inputs to target unstablemodes: Solve

Bj := ∇ · (µ̄∇αj) = φj, j = 1, . . . ,m

l Decoupled slow block: For the mmodes with<(λj) ≥ −δ, we get

ċj = λjcj + uj, j = 1, . . . ,m
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Bj := ∇ · (µ̄∇αj) = φj, j = 1, . . . ,m

l Decoupled slow block: For the mmodes with<(λj) ≥ −δ, we get
ċj = λjcj + uj, j = 1, . . . ,m

Bj = φj =⇒ infinite-dimensional Hautus condition =⇒ δ-stability of the linearised system
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Local Exponential Stabilisation: Closed-Loop View

The equation for ψ = eδtUy is

ψ̇ = −HΠψ −
(
B̂∗Π̂ψ

)
N̂ δ(t)ψ + Ŵδ(ψ), ψ(0, ·) = U(µ0 − µ̄)

whereHΠ = H− δI+ B̂B̂∗Π̂.

l Linear decay: HΠ generates exponential decay with rate δ

l Nonlinear remainder: the term Ŵδ(ψ) allows a Lipschitz-type estimate

l Contraction argument: for ‖ψ0‖ sufficiently small, the full closed-loop system is a contraction
in a suitable function space9. Therefore,

‖ψ(t)‖L2(Ω) ≤ C ‖ψ0‖L2(Ω) =⇒ ‖y(t)‖L2(Ω,µ̄−1) ≤ Ce−δt‖µ0 − µ̄‖L2(Ω,µ̄−1).
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l Nonlinear remainder: the term Ŵδ(ψ) allows a Lipschitz-type estimate

l Contraction argument: for ‖ψ0‖ sufficiently small, the full closed-loop system is a contraction
in a suitable function space9. Therefore,

‖ψ(t)‖L2(Ω) ≤ C ‖ψ0‖L2(Ω) =⇒ ‖y(t)‖L2(Ω,µ̄−1) ≤ Ce−δt‖µ0 − µ̄‖L2(Ω,µ̄−1).

9D. Kalise, L. M, G. Pavliotis. Linearization-Based Feedback Stabilization of McKean-Vlasov PDEs, arXiv. 2025.
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Numerical implementation
Work on the periodic domainΩ = Td

l Fourier expansion: for k ∈ Zd,

y(x, t) ≈ 1√
2π

∑
|k|≤L

ŷk(t)eik·x

l Galerkin projection: project the full equation onto the span of
{

1√
2π
eik·x

}
|k|≤L

. The matrix

representation is

˙̂y = Aŷ+
m∑
j=1

Bjuj, J =

∫ ∞

0

e2δt(ŷ⊤Mŷ+ ‖u‖2)dt

l Feedback computation: solve the discrete Riccati equation

(A⊤ + δI)ΠL +ΠL(A+ δI)−ΠLBB⊤ΠL +M = 0, u = −B⊤ΠLŷ
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Noisy Kuramoto under feedback control
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Figure: Set V(x) = 0, W(x) = −K cos(x) and σ = 0.5.
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Kuramotomodel + Potential V
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Figure: Set V(x) = 0.05 cos(x) and W(x) = − cos(x)
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Outlook

Conclusions

l Deterministic feedback accelerates convergence to steady states.
l Riccati-based law yields local, rate-guaranteed stabilization.

FutureWork

l Develop a global Lyapunov feedback law for full nonlinear PDE.
l Analyze robustness under model uncertainties in V and W.
l Numerics to higher-dimensional domains.
l Extend to kinetic equations: hypoelliptic analysis
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Thank you for the attention!
Questions, suggestions?

Feedback stabilisation for the McKean-Vlasov equation
July 17th, 2025



Operator-Theoretic Reformulation
Weighted spaces and linearisation

l Whywork in weighted spaces?
l This is the natural energy space for the linearised and localised operator

(A+DW,1)y := ∇ · (σ∇y+ y∇V) +∇ · (y∇W ∗ µ̄)

l It ensures that the operatorA+DW,1 is self-adjoint.
l Inner product structure simplifies spectral and stability analysis.
l By a unitary transformation, we convertA+DW into a Schrödinger operator plus a compact operator.

l Two linearisation strategies:

One can adopt the full linearisation DW, which captures all nonlocal effects, or the simplified
local formDW,1, which is easier to handle computationally. Both yield implementable schemes.

Linear Fokker-Planck operator︷ ︸︸ ︷
σ∆y+∇ · (y∇(V+W ∗ µ̄)) + ∇ · (µ̄∇W ∗ y)
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