IMPERIAL

Steering Probability Distributions via PDE-Constrained Optimisation

Lucas M. Moschen

Dante Kalise, Greg A. Pavliotis

Department of Mathematics, Imperial College London

Overview

- ✓ Objective: Steer the evolution of a probability density toward a desired target by applying optimal control to Fokker–Planck PDEs.
 ✓ Motivation:
 - Accelerate mixing and sampling.
 - Stabilise or transition between metastable states.

Schematic Overview of Our Control Framework

 Influence agent-based systems in meanfield settings.

\checkmark Method:

- **Spectral** discretisation of the PDE.
- Use Pontryagin-based open-loop control and Riccati-based feedback.

Background & Motivation

We study overdamped Langevin dynamics $dX_t = -\left(\nabla V(X_t) + \nabla W * \mu(X_t, t)\right) dt + \sqrt{2\sigma} dW_t$, where the blue term is the interaction potential with the distribution $\mu(\cdot, t)$ of X_t . Such dynamics appear in molecular dynamics, Bayesian sampling, and statistical physics.

Fokker-Planck and McKean-Vlasov

The associated density $\mu(x,t)$ evolves as

$-0.2 - \frac{1}{a_0} - \frac{1}{a_1} - \frac{1}{a_2} - \frac{1}{a_3} - \frac{1}{a_4} - \frac{1}{a_2} - \frac{1}{a_3} - \frac{1}{a_4} - \frac{1}{a_5} - \frac{1}{a_6} - \frac{1}{a_7} - \frac{1}{a_8} - \frac{1}{a_8}$

Spectral Discretization

0.8-

0.6

0.4

0.2

- ✓ Select an L² basis that reflects the structure of the problem (e.g., Fourier for periodicity, Hermite for fast decay).
- ✓ Expand $\mu(x, t)$ in this basis to reduce the PDE to a finite-dimensional ODE system.
- ✓ Apply Pontryagin- or Riccati-based methods on this reduced system to compute the optimal control law.

Open-Loop Approach (Pontryagin)

 ✓ Derive optimality conditions via the Pontryagin Maximum Principle, yielding a forward
PDE for μ and a backward adjoint PDE for φ.
✓ The optimality condition produces a time-

Ill-conditioned 2D Gaussian

With four control functions, time to reach equilibrium can be reduced significantly.

Figure 1: L^2 -norm of the difference to the equilibrium with potential $V(x, y) = \frac{1}{2}(x^2 + 0.1y^2)$ and W(x, y) = 0. One to four control functions were used with pre-determined α functions.

1D Kuramoto Model

Our feedback control efficiently switches the system between two stable equilibria.

 $\partial_t \mu = \nabla \cdot \left(\mu \nabla V + \mu \left(\nabla W * \mu \right) \right) + \sigma \Delta \mu.$

✓ ∇W * µ is the non-linear and non-local term.
✓ Under appropriate conditions, the dynamics converge to a unique equilibrium, but convergence can be slow.

✓ Inclusion of W can produce multiple equilibria, including unstable stationary states.

Connections to OT & Learning

✓ FP equations are gradient flows in Wasserstein space: links our work to OT.
✓ We design control laws that define transport maps from the initial to the desired density.
✓ The final goal is to accelerate sampling.

Optimal Control Approach

dependent control $u^*(t)$ on [0, T]. \checkmark Compute $u^*(t)$ using gradient-based methods and by solving the combined ODE system for μ and ϕ .

Closed-Loop (Feedback) via a Riccati Equation

- ✓ Linearize the dynamics around μ_{∞} by setting $\delta \mu = \mu \mu_{\infty}$, and approximate \mathcal{W} and \mathcal{N} . ✓ Solve the Riccati Equation for the infinitehorizon ($T = \infty$) linear-quadratic problem.
- \checkmark The solution, denoted by Π , yields the **feed-back control**

 $u(t) = -\nu^{-1} \mathcal{N}^* \Pi \,\delta\mu,$

ensuring **robust** convergence.

✓ Apply this control in the original non-linear dynamics.

Figure 2: Distribution evolution in the Kuramoto model with $(W(x) = -5\cos(x) \text{ and } G(x) = 0$. Twenty snapshots show the initial state (black) transitioning to red (uncontrolled) and blue (controlled) equilibria.

Conclusions & Outlook

 Effective PDE-based control can increase the spectral gap and accelerate convergence.

Simulations show that the PDE-based con-

We aim to steer $\mu(\cdot,t)$ toward the target μ_∞ by minimizing

 $J(u) := \frac{1}{2} \int_0^T \left(\|\mu(\cdot, t) - \mu_\infty\|_{L^2}^2 + \nu \|u(t)\|^2 \right) dt,$

subject to the Fokker–Planck (or McKean– Vlasov) PDE

 $\partial_t \mu = \mathcal{A}\mu + \mathcal{W}(\mu) + u \,\mathcal{N}\mu,$

where u(t) is the control and $\mathcal{N}\phi := \nabla \cdot (\phi \nabla \alpha)$ for a given shape function α . Results

✓ The ill-conditioned Gaussian is a diffusion–
based model with a small spectral gap, lead ing to slow convergence.

✓ The Kuramoto model describes coupled oscillator dynamics and exhibits bistability, making its behaviour highly sensitive to initial conditions.

trol stabilizes metastable states and accelerates convergence in challenging regimes.

Future: integration with ML pipelines and OT for sampling applications.

UK Research and Innovation

