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Overview
✓Objective: Steer the evolution of a probabil-
ity density toward a desired target by apply-
ing optimal control to Fokker–Planck PDEs.

✓Motivation:
– Acceleratemixing and sampling.
– Stabilise or transition between metasta-
ble states.

– Influence agent–based systems in mean–
field settings.

✓Method:
– Spectral discretisation of the PDE.
– UsePontryagin–based open–loop control
and Riccati–based feedback.

Background &Motivation
We study overdamped Langevin dynamics

dXt = −
(
∇V (Xt) +∇W ∗ µ(Xt, t)

)
dt +

√
2σ dWt,

where the blue term is the interaction poten-
tial with the distribution µ(·, t) of Xt. Such dy-
namics appear inmolecular dynamics, Bayesian
sampling, and statistical physics.

Fokker–Planck andMcKean–Vlasov
The associated density µ(x, t) evolves as

∂tµ = ∇ ·
(
µ∇V + µ

(
∇W ∗ µ

))
+ σ∆µ.

✓∇W ∗µ is thenon-linear andnon-local term.
✓Under appropriate conditions, the dynamics
converge to a unique equilibrium, but con-
vergence can be slow.

✓ Inclusion of W can produce multiple equilib-
ria, including unstable stationary states.

Connections to OT & Learning
✓FP equations are gradient flows in Wasser-
stein space: links our work to OT.

✓Wedesign control laws that define transport
maps from the initial to the desired density.

✓The final goal is to accelerate sampling.

Optimal Control Approach
We aim to steer µ(·, t) toward the target µ∞ by
minimizing

J(u) :=
1

2

∫ T

0

(
∥µ(·, t)− µ∞∥2L2 + ν∥u(t)∥2

)
dt,

subject to the Fokker–Planck (or McKean–
Vlasov) PDE

∂tµ = Aµ +W(µ) + uNµ,

where u(t) is the control and Nϕ := ∇ · (ϕ∇α)

for a given shape function α.

Schematic Overview of Our Control Framework
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Spectral Discretization
✓Select an L2 basis that reflects the structure
of the problem (e.g., Fourier for periodicity,
Hermite for fast decay).

✓Expand µ(x, t) in this basis to reduce the PDE
to a finite-dimensional ODE system.

✓Apply Pontryagin– or Riccati–basedmeth-
ods on this reduced system to compute the
optimal control law.

Open–Loop Approach (Pontryagin)
✓Derive optimality conditions via thePontrya-
gin Maximum Principle, yielding a forward
PDE for µ and a backward adjoint PDE for ϕ.

✓The optimality condition produces a time-
dependent control u∗(t) on [0, T ].

✓Compute u∗(t) using gradient-based meth-
ods and by solving the combinedODE system
for µ and ϕ.

Closed-Loop (Feedback) via a Riccati
Equation
✓Linearize the dynamics aroundµ∞ by setting
δµ = µ− µ∞, and approximateW andN .

✓Solve the Riccati Equation for the infinite-
horizon (T = ∞) linear-quadratic problem.

✓The solution, denoted by Π, yields the feed-
back control

u(t) = −ν−1N ∗Π δµ,

ensuring robust convergence.
✓Apply this control in theoriginal non-linear dy-
namics.

Results
✓The ill–conditionedGaussian is a diffusion–
based model with a small spectral gap, lead-
ing to slow convergence.

✓The Kuramotomodel describes coupled os-
cillator dynamics and exhibits bistability,
making its behaviour highly sensitive to initial
conditions.

m

Ill–conditioned 2D Gaussian
With four control functions, time to reach equi-
librium can be reduced significantly.
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Figure 1: L2-norm of the difference to the equilibrium with potential V (x, y) = 1
2(x

2 + 0.1y2) andW (x, y) = 0. One to four
control functions were used with pre-determined α functions.

1D KuramotoModel
Our feedback control efficiently switches the
system between two stable equilibria.
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Figure 2: Distribution evolution in the Kuramoto model with (W (x) = −5 cos(x) and G(x) = 0. Twenty snapshots show
the initial state (black) transitioning to red (uncontrolled) and blue (controlled) equilibria.

Conclusions & Outlook
• Effective PDE–based control can increase
the spectral gap and accelerate convergence.

• Simulations show that the PDE–based con-
trol stabilizes metastable states and accel-
erates convergence in challenging regimes.

• Future: integration with ML pipelines and OT
for sampling applications.
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