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EXAMPLE 10. Letx = {1,2,3} and ®= {0,1}, and consider experiments E1 and E2

which consist of observing II and XZ with the above Z and the same &, but with

probability densities as follows:

1 *2
1 2 3 1 2 3
folx;) | .90 | .05 | .05 fix,) | .26 | 73 | .01
fix) | .09 | .0ss | .855| , fi(x,) | .026 | .803 [ .171

If, now, X = 1 is observed, the LP states that the information
about e should depend on the experiment only through (f%(l}, f{(l)} = (.9, .09).
Furthermore, since this is proportional to (.26, .026) = {f%(l), ff(l)), it
should be true that x, =1 provides the same information about & as does Xp = L
Another way of stating the LP for testing simple hypotheses, as here, is that

the experimental information about ¢ is contained in the likelihood ratio for

the observed x. Note that the Tikelihood ratios for the two experiments are
also the same when 2 is observed, and also when 3 is observed. Hence, no
matter which experiment is performed, the same conclusion about 8 should be
reached for the given observation. This example clearly indicates the start-
ling nature of the LP. Experiments EI and E2 are very different from a
frequentist perspective. For instance, the test which accepts & = 0 when the
observation is 1 and decides 8 = 1 otherwise is a most powerful test with error
probabilities (of Type 1 and Type II, respectively) .10 and .09 for E], and .74
and .026 for Ep- Thus the classical frequentist would report drastically
different information from the two experiments. (And the conditional frequen-

tist is also likely to report E, and E, differently; indeed, for E, it is hard

1
to perform any sensible conditional frequentist analysis because of the three

point Z and the widely differing error probabilities.)
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If we keep in mind the inversion aspect of Statistics presented in Section
1.2, it is tempting to consider the likelihood as a generalized density in
#, whose mode would then be the maximum likelihood estimator, and to
work with this density as with a regular distribution. This approach seems
to have been advocated by Laplace when he suggested using the uniform
prior distribution when no information was available on 6 (see Examples
1.2.3-1.2.5). Similarly, Fisher introduced the fiducial approach (see Note
1.8.1) to try to circumvent the determination of a prior distribution while
putting into practice the Likelihood Principle, the choice of his distribution
being objective (since depending only on the distribution of the observa-
tions). However, this approach is at its most defensible when 6 is a location
parameter (see also Example 1.5.1), since it leads in general to paradoxes
and contradictions, the most immediate being that £(f|z) is not necessarily
integrable as a function of 6 (Exercise 1.26). The derivation of objective
posterior distributions actually calls for a more advanced theory of non-
informatie distributions (see Chapter 3), which shows that the likelihood
function cannot always be considered the most natural posterior distribu-
tion.

Fazer 1.25
Referente ao exercicio 1.37
Fazer 1.38

Referente ao exercicio 1.41

hitos:/ lineli i doi/endf/10.1111/.2517-6161.1993.tb01477


https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.2517-6161.1993.tb01477.x

