
Optimal Vaccination Strategies 
in Interconnected Metropolitan Areas

Lucas M. Moschen and Maria S. Aronna
School of Applied Mathematics, Fundação Getulio Vargas, Brazil

➢ Optimal control is a powerful tool with a robust

mathematical foundation that can provide solutions

to real-world problems.

➢ A comprehensive understanding of the model can

be achieved by studying the problem theoretically

and numerically.

➢ There is a gap in the field regarding second-order

and sufficient conditions for optimality in control-

affine problems with constraints. This presents an

opportunity for further research and development.

➢ Our study found that a higher vaccination rate in

the capital accelerate the control of the epidemic.

However, the interplay of various factors in this

process is complex.
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➢ Developed a mathematical model to track the

spread of an epidemic in major metropolitan

areas, including Rio de Janeiro, Paris, and New

York.

➢ Implemented a centralized vaccination strategy in

these regions by solving a high-dimension optimal

control problem with constraints.

➢ Conducted numerical experiments that suggest a

higher vaccination rate in the capital city can

be beneficial, depending on the cost of the vaccine.

Highlights

➢ Compartmental model based on [1].

➢ The metropolitan area is divided in cities, which

contains Susceptible, Exposed, Infectious and

Recovered individuals as a usual SEIR model.

➢ A proportion 𝒑𝒊𝒋 of the city 𝒊 works in the city 𝒋

during the day.

➢ The individuals spend a proportion 𝜶 of their day in

their home city and 𝟏 − 𝜶 in the capital working,

yielding the following diagram

➢ We assume a metropolitan structure: there is a

larger city, the capital, that attracts most of the

workers from other cities.

➢ Then, a parcel 𝒑𝒌𝟏 of each city works in the

capital, leading to the following graph:

➢ The force of infection is 𝛼𝛽𝑘𝐼𝑘 in the night period

and

(1 − 𝛼)(𝑝𝑘1𝛽1𝐼1
𝑒𝑓𝑓

+ 𝑝𝑘𝑘𝛽𝑘𝐼𝑘
𝑒𝑓𝑓

)

during the working hours for each non-capital city,

where 𝐼𝑘
𝑒𝑓𝑓

is the effective number of infectious

individuals in city 𝑘 during the day.

➢ The parameter 𝛽 represents the infection rate,

which depends on the city's density. The

parameter 𝜏 is the inverse of the infectious period,

and 𝛾 is the inverse of the recovery period.

Modelling strategy

➢ We calculate the 𝑅0 using the spectral radius of the

next-generation matrix, which reflects the rate of

new infections and the duration of infectiousness.

➢ Despite not being able to obtain a closed-form

expression, we establish a general bound:

min𝑖 𝑣𝑖 ≤ 𝑅0 ≤ max𝑖 𝑣𝑖,

in which 𝑣𝑖 = 𝛼𝑅0
𝑖 + 1 − 𝛼 σ𝑗=1

𝐾 𝑝𝑖𝑗𝑅0
𝑗
.

➢ Another bound uses the assumption of a

metropolitan area. Assuming 𝛼 ≥ 0.5 , we

observed numerically that this bound is tighter in

80% of the times.

Basic reproduction number

𝜶 + (𝟏 − 𝜶)

➢ We include vaccination as a control strategy to

curb the epidemic: susceptible, exposed and

recovered individuals receive a vaccine at a rate 𝒖𝒊

depending on the city.

➢ The model aims to minimize a cost functional that

balances the number of vaccinated and

hospitalized individuals at the final time 𝑇.

➢ We consider capacity and logistic restrictions: a

weekly cap of available vaccines and an

instantaneous cap of vaccinated individuals.

➢ The final model is a mixed control-state and

pure-state constrained optimal control problem:

Optimal control problem

➢ We proved existence of optimal solution for our

problem as an application of Cesari’s paper [2].

➢ We derived the necessary conditions based on the

work of Boccia, De Pinho and Vinter [3].

➢ The pure-state constraint poses a challenge due to

the corresponding multiplier being a measure.

➢ This allowed us to analyze the general behavior of

the solution. We could verify that the solution

attains the bounds, that is,

𝑢𝑖 𝑆𝑖 + 𝐸𝑖 + 𝑅𝑖 ∈ 0, 𝐷𝑖 .

➢ This result exhibits characteristics like the Bang

Bang solution, but with variable bounds.

Theoretical results

➢ We noticed that 𝑹𝟎 is most influenced by the

value of 𝜷𝟏, the infection rate of the capital. So,

decreasing it is more relevant.

➢ The parameters 𝛼 and 𝑝𝑖𝑗 do not change the

behavior of the epidemic but increase it in more

interconnected regions.

➢ The metropolitan area assumption resulted in worse

upper and lower bounds in only 4% of the time

compared to the general bound. We highlight the

percentage of times the upper (UB) and lower (LB)

bounds were better.

➢ When including vaccination, we can verify its

relevance in reducing the number of infections

in the metropolitan region:

➢ We verified that the optimizer preferers to

vaccinate the capital when the susceptible

population still plays a role.

Numerical experiments

➢ The transition matrix of working place in Rio de

Janeiro shows our assumption:

The case of Rio de Janeiro

UB LB

49% X X

46% X

1% X
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